Answer:
C. The bug's change in momentum is equal to the car's change in momentum.
Explanation:
As we know by Newton's 2nd law

here we have also know that when car hits the bug then force applied by wind shield on the bug is same as the force applied by the bug on the car's wind shield as per Newton's III law

so we know that

so we have

so correct answer will be
C. The bug's change in momentum is equal to the car's change in momentum.
The gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
<h3>What is the gravitational force of the earth on the person?</h3>
The gravitational force exerted by the earth on a person standing on the earth's surface is given below as follows:
where
G = 6.67 * 10⁻¹¹
m¹ = 62 kg
m² = 5.97 * 10²⁷ kg
r = 6.4 * 10⁶ m

Therefore, the gravitational force exerted by the earth on a person standing on the earth's surface is 602.74 N.
Learn more about gravitational force at: brainly.com/question/940770
#SPJ1
The sun light that received by the water in the ocean will increase the average temperature of the water and make it warmer.
With the help of wind and current, the warm water will spread out to another region, and increasing the average temperature in that region and affecting its overall climate.
Example The temperature rise in Valdivia<span>, Chile and in Beijing, China after receiving warm water from arctic.</span>
This question can be solved from the Kepler's law of planetary motion.
As per this law the square of time period of a planet is proportional to the cube of semi major axis.
Mathematically it can be written as 
⇒
Here K is the proportionality constant.
If
and
are the orbital periods of the planets and
and
are the distance of the planets from the sun, then Kepler's law can be written as-

⇒ 
Here we are asked to calculate the the distance of Saturn from sun.It can solved by comparing it with earth.
Let the distance from sun and orbital period of Saturn is denoted as
and
respectively.
Let the distance from sun and orbital period of earth is denoted as
and
respectively.
we are given that
we know that
1 AU and
1 year.
1 AU is the mean distance of earth from the sun which is equal to 150 million kilometre.
Hence distance of Saturn from sun is calculated as -
From Kepler's law as mentioned above-

=![[1 ]^{3} *\frac{[29.46]^{2} }{[1]^{2} } AU](https://tex.z-dn.net/?f=%5B1%20%5D%5E%7B3%7D%20%2A%5Cfrac%7B%5B29.46%5D%5E%7B2%7D%20%7D%7B%5B1%5D%5E%7B2%7D%20%7D%20AU)

⇒![R_{1} =\sqrt[3]{867.8916}](https://tex.z-dn.net/?f=R_%7B1%7D%20%3D%5Csqrt%5B3%5D%7B867.8916%7D)
=9.5386 AU [ans]