Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Answer: 2000 watts
Explanation:
Given that,
power = ?
Weight of object = 200-N
height = 4 m
Time = 4 s
Power is the rate of work done per unit time i.e Power is simply obtained by dividing work by time. Its unit is watts.
i.e Power = work / time
(since work = force x distance, and weight is the force acting on the object due to gravity)
Then, Power = (weight x distance) / time
Power = (200N x 4m) / 4s
Power = 8000Nm / 4s
Power = 2000 watts
Thus, 2000 watts of power is needed to lift the object.
Answer:
The vertical distance that the ski jumper fell is 417.45 m.
Explanation:
Given;
initial horizontal velocity of the jumper,
= 26 m/s
horizontal distance of the jumper, dx = 240 m
The time of the motion is given by;
dx = Vₓt
t = dx / Vₓ
t = 240 / 26
t = 9.23 s
The vertical distance traveled by the diver is given by;

initial vertical velocity,
, = 0

Therefore, the vertical distance that the ski jumper fell is 417.45 m.
The person should start to slow down but if close enough or in the intersection go threw. Otherwise come to a complete stop until the light turns green again