In the single-slit experiment, the displacement of the minima of the diffraction pattern on the screen is given by

(1)
where
n is the order of the minimum
y is the displacement of the nth-minimum from the center of the diffraction pattern

is the light's wavelength
D is the distance of the screen from the slit
a is the width of the slit
In our problem,


while the distance between the first and the fifth minima is

(2)
If we use the formula to rewrite

, eq.(2) becomes

Which we can solve to find a, the width of the slit:
The refraction of light makes a swimming pool seem <u>shallower</u>.
The swimming pool seems shallower because the rays of light coming from the bottom of the pool do not come with a straight path. The path of light is straight as long as it is in the water.
When lights come out of the water into the air it bents downwards. This bending is called refraction.
Refraction forms a virtual image of the pool and it seems shallower than it actually is to the observer. This only happens when light travels from one transparent medium into another having lower density.
If you need to learn more about why a swimming pool appears <u>shallower</u>, click here
https://brainly.in/question/7136803?referrer=searchResults
#SPJ4
Answer:
Option D) 4A
Explanation:
As the cycle of the wave passes by, the amplitude gives the longest journey when the spot travels from the undistributed position. During each cycle the spot travels "Four times" .
Considering one of this cycle, if it begins to travel from it's undistributed position , there would be four movements i.e
* Upward movement through distance A
*Downward movement through distance A
*Downward again through distance A
*Upward through distance A.
Then it would travel back to its undistributed position held
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s