Answer:
c) T(−1, 3) ° Rotation,180°
Step-by-step explanation:
<u><em>Explanation:</em></u><em>-</em>
<em>First we will apply transformation is </em>
<em>Rotation of 180° then we will apply transformation is changes </em>
<em>(x,y) to (-x ,-y)</em>
<em>a)</em>
<em>Given vertex T( 2 ,2 )</em>
<em>T( 2 ,2 )→ T( -2 ,-2)</em>
<em>Next we will apply rule </em>
<em>Horizontal translation left '1' units and Vertical translation up 'd' units</em>
<em>T( -2 ,-2) → T¹ ( -2 -1 ,-2 +3)</em>
<u><em>The new vertex is T¹ ( -3 ,1)</em></u>
<em>b)</em>
<em>Given vertex U( 4 ,2 )</em>
<em>U( 4 ,2 )→ U( -4 ,-2)</em>
<em>Next we will apply rule </em>
<em>Horizontal translation left '1' units and Vertical translation up 'd' units</em>
<em>U -4 ,-2) → U¹ ( -4 -1 ,-2 +3)</em>
<u><em>The new vertex is U¹ ( -5 ,1)</em></u>
<em>c) </em>
<em>Given vertex R( 3 ,5 )</em>
<em>R( 3 ,5 )→ R( -3,-5)</em>
<em>Next we will apply rule </em>
<em>Horizontal translation left '1' units and Vertical translation up 'd' units</em>
<em>R( -3 ,-5) → R¹ ( -3 -1 ,-5 +3)</em>
<u><em>The new vertex is R¹ ( -4 ,-2)</em></u>
<em>d) </em>
<em>Given vertex S( 1 ,3 )</em>
<em>S( 1 ,3 )→ S( -1 ,-3)</em>
<em>Next we will apply rule </em>
<em>Horizontal translation left '1' units and Vertical translation up 'd' units</em>
<em>S( -1,-3) → S¹ ( -1 -1 ,-3 +3)</em>
<u><em>The new vertex is S¹ ( -2,0)</em></u>
<u><em></em></u>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>