Answer:
Solve for the first variable in one of the equations, then substitute the result into the other equation.
Point Form:
(
1
,
−
2
)
Equation Form:
x
=
1
,
y
=
−
2
Step-by-step explanation:
Graph.
y
=
3
x
−
1
y
=
x
+
1
y
=
−
x
−
1
y
=
x
+
1
The acute angles of a right triangle are complementary, so
α + β = 90
(5x/3 +20) + (2x/3) + 14) = 90 . . . . . . substitute given values
7x/3 +34 = 90 . . . . . . . . . . . . . . . . . . . collect terms
7x/3 = 56 . . . . . . . . . . . . . . . . . . . . . . . subtract 34
x = (3/7)*56 = 24 . . . . . . . . . . . . . . . . . multiply by 3/7
Then the value of α is ...
α = 5*24/3 +20 = 60
the answer for x is 7.27 recurring