Answer:

FCI=88.0818 MM≅88 MM
Explanation:
Empirical correlation based on the work of Bridgwater and Mumford (1979):
For Liquid or solid phase Plants:
F<60,000 tonne/yr Eq (1)
F≥60,000 tonnes/yr Eq (2)
Where:
N is the number of functional units
F is the process throughput tonnes/yr
In our case F=40,000 tonne/yr <60,000 tonne/yr, We are going to use Eq (1)
F<60,000 tonne/yr
N=8, F=40,000 tonne/yr

FCI=88.0818 MM≅88 MM
Answer: The Earth is an oblate spheroid which is more elongated along the equator.
Regions along the equator receives more amount of direct sunlight from the sun causing higher temperatures along the region. While places along the poles receives less amount of heat since heat is scattered in a larger area due to the shape of the Earth around the poles.
Explanation: So places along the equator experiences higher temperature due to the direct hit of sunlight. And places along the polar regions experiences cooler temperature since it receives less amount of sunlight.
Answer:
(x+10) (x+3)
Explanation:
1) this quadratic equation is in the form of: ax^2+bx+c
where we need to figure out what*what=c(30)
and what+what=13(b)
factors of 30: -1,-30 1,30 2,15 -2,-15 3,10 -3,-10 5,6 -5,-6
factors of 30 which equal 13: 3,10
lets substitute 3 and 10 in lace of 13x to factor by grouping:
x^2+3x+10x+30
make two sets:
set a) x^2+3x
set b) 10x+30
the GCF in set a is "x":
x(x+3)
The Gcf in set b is 10:
10(x+3)
now combine the terms outside the parantheses:
(x+10)(x+3)=0
Hope this helps!
Hydrogen (H) 1s1
2 Helium (He) 1s2
3 Lithium (Li) [He] 2s1
4 Beryllium (Be) [He] 2s2
5 Boron (B) [He] 2s2 2p1
6 Carbon (C) [He] 2s2 2p2
7 Nitrogen (N) [He] 2s2 2p3
8 Oxygen (O) [He] 2s2 2p4
9 Fluorine (F) [He] 2s2 2p5
10 Neon (Ne) [He] 2s2 2p6
11 Sodium (Na) [Ne] 3s1
12 Magnesium (Mg) [Ne] 3s2
13 Aluminium (Al) [Ne] 3s2 3p1
14 Silicon (Si) [Ne] 3s2 3p2
15 Phosphorus (P) [Ne] 3s2 3p3
16 Sulphur (S) [Ne] 3s2 3p4
17 Chlorine (Cl) [Ne] 3s2 3p5
18 Argon (Ar) [Ne] 3s2 3p6
19 Potassium (K) [Ar] 4s1
20 calcium (ca) [Ar] 4s2