Answer:
The correct option is;
d 4400
Explanation:
The given parameters are;
The mass of the ice = 55 g
The Heat of Fusion = 80 cal/g
The Heat of Vaporization = 540 cal/g
The specific heat capacity of water = 1 cal/g
The heat required to melt a given mass of ice = The Heat of Fusion × The mass of the ice
The heat required to melt the 55 g mass of ice = 540 cal/g × 55 g = 29700 cal
The heat required to raise the temperature of a given mass ice (water) = The mass of the ice (water) × The specific heat capacity of the ice (water) × The temperature change
The heat required to raise the temperature of the ice from 0°C to 100°C = 55 × 1 × (100 - 0) = 5,500 cal
The heat required to vaporize a given mass of ice = The Heat of Vaporization × The mass of the ice
The heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal
The total heat required to boil 55 g of ice = 29700 cal + 5,500 cal + 4,400 cal = 39,600 cal
However, we note that the heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal.
The heat required to vaporize the 55 g mass of ice at 100°C = 4,400 cal
The molecule for ethane is C2H6. or CH3-CH3.
Carbon LOVES hydrogen. If possible, Carbon would have four bonds attach to hydrogens. IN this molecule, one of the bond is used to attach a carbon to another carbon, so instead of 4 hydrogens, each carbon would have 3 hydrogens..
C is the answer it’s not d because mackerel does not eat tuna I’m not sure tho
When placed in a container, the heaviest (most dense) will sink to the bottom and the lightest (least dense) will rise to the top.
Therefore, Gasoline would rise to the top.