<span>35.0 mL of 0.210 M
KOH
molarity = moles/volume
find moles of OH
do the same thing for: 50.0 mL of 0.210 M HClO(aq) but for H+
they will cancel out: H+ + OH- -> H2O
but you'll have some left over,
pH=-log[H+]
pOH
=-log[OH-]
pH+pOH
=14</span>
I am not all understood but for the school to earn money you can:
make
--a raffle
--lotto
-- yard sale
-- class photo
-- origami for sale or something
-- buffet or food sale (example all Friday ice cream sale, 2 livre ice cream)
Answer:
b. Some had similar properties
A large atom means that the radius would be large, meaning that the effective nuclear charge is low, therefore a lower electronegativity based on the periodic table. A smaller atom would mean the opposite, therefore a higher electronegativity. This combination would mean that the new molecule is polar.
Also, to answer your question, it would be most likely different from both atoms, as size doesn't really matter in a compound's properties.
The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>