Answer:
a. in pure water Solubility (x) = 1.26 x 10⁻⁴M
b. in 0.202M M⁺² Solubility (x) = 9.963 x 10⁻¹²M
The large drop in solubility is consistent with the common ion effect.
Explanation:
a. Solubility in pure water
Given: M(OH)₂ ⇄ M⁺² + 2OH⁻
I --- 0 0
C --- x 2x
E --- x 2x
Ksp = [M⁺²][OH⁻]² = (x)(2x)² = 4x³ => x = CubeRt(Ksp/4)
solubility in pure water = x = CubeRt(8.05 x 10⁻¹²/4) = 1.26 x 10⁻⁴M
b. Solubility in presence of 0.202M M⁺² as common ion.
Given: M(OH)₂ ⇄ M⁺² + 2OH⁻
I --- 0.202M 0
C --- +x +2x
E --- 0.202M + x 2x
≈ 0.202M
Ksp = [M⁺²][2x]² = (0.202)(2x)² = (0.202)(4x²) = 8.05 x 10⁻¹²
=> x = (8.05 x 10⁻¹²)/(0.202)(4) = 9.963 x 10⁻¹²M
I would say the answer is D
Paint samples received by forensic laboratories are usually in the form of small chips or smears. Infrared (IR) spectroscopy is one of the most commonly used tools available for the analysis of these types of samples and serves as a staple comparative technique in the assessment of whether or not a questioned sample could have come from a suspected object
The most direct way to probe the vibrational frequencies of a molecule is through infrared spectroscopy. This is because vibrational transitions typically require an amount of energy that corresponds to the infrared region of the spectrum. Raman spectroscopy, which typically uses visible light, can also be used to directly measure vibration frequencies.
Answer:
- 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Explanation:
<em>Photosynthesis</em> is the chemical process carried out by plants for the conversion of inorganic matter (carbon dioxide and water) into organic matter (glucose) with the release of oxygen, using light (sun energy).
So the chemical process may be represented by:
carbon dioxide + water + sun energy → glucose + oxygen
- <u>Skeleton equation:</u>
CO₂ + H₂O + sun energy → C₆H₁₂O₆ + O₂
- <u>Balanced chemical equation:</u>
6CO₂ + 6H₂O + sun energy → C₆H₁₂O₆ + 6O₂
- <u>Supressing the energy to show only the chemical compounds:</u>
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Answer:
it is b
Explanation:
mid ocean ridge diverges meaning it moving in two different direction horizontally - left to right