Answer:
The time for final 15 cm of the jump equals 0.1423 seconds.
Explanation:
The initial velocity required by the basketball player to be able to jump 76 cm can be found using the third equation of kinematics as

where
'v' is the final velocity of the player
'u' is the initial velocity of the player
'a' is acceleration due to gravity
's' is the height the player jumps
Since the final velocity at the maximum height should be 0 thus applying the values in the above equation we get

Now the veocity of the palyer after he cover'sthe initial 61 cm of his journey can be similarly found as

Thus the time for the final 15 cm of the jump can be found by the first equation of kinematics as

where symbols have the usual meaning
Applying the given values we get

Answer:
Magnetic energy stored in the inductor when all of the energy in the circuit is in the inductor = 0.049 mJ
If all the energy is then transferred into the capacitor, the voltage drop across the capacitor = 0.00572 V = 0.01 V (expressed to the hundredths value)
Explanation:
In an RLC circuit with maximum current of 7mA = 0.007 A
When all of the energy is stored in the inductor, maximum current will flow through it,
Hence E = (1/2) LI²
L = inductance of the inductor = 2 H
E = (1/2) (2)(0.007²) = 0.000049 J = 0.049 mJ
When all the energy in the circuit is in the capacitor, this energy will be equal to the energy calculated above.
And for a capacitor, energy is given as
E = (1/2) CV²
E = 0.000049 J, C = 3 F, V = ?
0.000049 = (1/2)(3)(V²)
V = 0.00572 V = 0.01 V
I think the answer is they are all made up atoms
Is this science because I am suck at it
Answer:
The minimum thickness is 
Explanation:
generally the equation for thin film interference is mathematically represented as

Where t the thickness
m is any integer
n is the refractive index of the film
is the wavelength of light
Since we are looking for the thickness we make t the subject of the formula

m= 0 cause the thickness is minimum at m=0
Substituting values

