(a) Period of the wave
The period of a wave is the time needed for a complete cycle of the wave to pass through a certain point.
So, if an entire cycle of the wave passes through the given location in 5.0 seconds, this means that the period is equal to 5.0 s: T=5.0 s.
(b) Frequency of the wave
The frequency of a wave is defined as

since in our problem the period is

, the frequency is

(c) Speed of the wave
The speed of a wave is given by the following relationship between frequency f and wavelength

:
Answer:
94.1 m
Explanation:
From Coulombs law,
F = Gm1m2/r²................... Equation 1
where F = force, m1 = first mass, m2 = second mass, G = universal constant, r = distance of separation.
Make r the subject of the equation,
r = √(Gm1m2/F)................. Equation 2
Given: F = 7×10² N, m1 = 15×10⁷ kg, m2 = 62×10⁷ kg,
Constant: G = 6.67×10⁻¹¹ Nm²/kg²
Substitute into equation 2
r = √( 6.67×10⁻¹¹×15×10⁷×62×10⁷/7×10²)
r √(886.16×10)
r √(88.616×10²)
r = 9.41×10
r = 94.1 m.
Hence the distance of separation = 94.1 m
Heat stroke had occurred when your body can no longer regulate its temperature. hope it helps :)
Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V
An eclipse is a phenomenon of an astronomical object being obscured by something. In this case, it is the Moon that is being obscured from sunlight by Earth's shadow. Answer is D.