To change from mass to weight is Fw = 30 kg * 9.8 m/s^2 = 294 N. To change from weight to mass divide by gravity (9.8 m/s^2).
A. At the top. At this point, the child is highest, and they are not moving. Their potential energy is much greater.
Explanation:
Bases taste bitter, feel slippery, and conduct electricity when dissolved in water. Indicator compounds such as litmus can be used to detect bases. Bases turn red litmus paper blue. The strength of bases is measured on the pH scale.
Answer:
12.97 km
Explanation:
In order to find the resultant displacement, we have to resolve each of the 3 displacements along the x and y direction.
Taking north as positive y direction and east as positive x-direction, we have:
- Displacement 1: 2.00 km to the north
So

- Displacement 2: 60.0° south of east for 7.00 km
So

- Displacement 3: 9.50 km 35.0° north of east
So

So the net displacement along the two directions is:

So, the distance between the initial and final position is equal to the magnitude of the net displacement:

Answer:
E = 4.83 N/ C
Explanation:
If we have a uniform charge sphere we can use the following formulas to calculate the Electric field due to the charge of the sphere:
: Formula (1) To calculate the electric field in the region outside the sphere r ≥ a
Where:
K: coulomb constant (N*m²/C²)
a: sphere radius (m)
Q: Total sphere charge (C)
r : Distance from the center of the sphere to the region where the electric field is calculated (m)
Equivalences
1nC=10⁻⁹C
1cm= 10⁻²m
Data
k= 9*10⁹ N*m²/C²
Q=4nC=4 *10⁻⁹C
D = 26 cm = 26*10⁻²m = 0.26m
a = D/2 = 0.13m
r= R+a = 2.6 m+ 0.13m = 2.73m
Problem development
Magnitude of the electric field at r = 2.73m from the center of the sphere
r>a , We apply the Formula (1) :


E= 4.83 N/ C