The current flowing in each resistor of the circuit is 4 A.
<h3>
Equivalent resistance of the series resistors</h3>
The equivalent resistance of the series circuit is calculated as follows;
6 Ω and 4 Ω are in series = 10 Ω
5 Ω and 10Ω are in series = 15 Ω
<h3>Effective resistance of the circuit</h3>

<h3>Current flowing in the circuit</h3>
V = IR
I = V/R
I = 24/6
I = 4 A
Learn more about resistors in parallel here: brainly.com/question/15121871
Probably gas because it will reach Nobel gas state
Answer:
The shearing stress is 10208.3333 Pa
The shearing strain is 0.25
The shear modulus is 40833.3332 Pa
Explanation:
Given:
Block of gelatin of 120 mm x 120 mm by 40 mm
F = force = 49 N
Displacement = 10 mm
Questions: Find the shear modulus, Sm = ?, shearing stress, Ss = ?, shearing strain, SS = ?
The shearing stress is defined as the force applied to the block over the projected area, first, it is necessary to calculate the area:
A = 40*120 = 4800 mm² = 0.0048 m²
The shearing stress:

The shearing strain is defined as the tangent of the displacement that the block over its length:

Finally, the shear modulus is the division of the shearing stress over the shearing strain:

Answer:
362.41 km/h
Explanation:
F = Force
m = Mass = 84 kg
g = Acceleration due to gravity = 9.81 m/s²
C = Drag coefficient = 0.8
ρ = Density of air = 1.21 kg/m³
A = Surface area = 0.04 m²
v = Terminal velocity
F = ma

Converting to km/h

The terminal velocity of the stone is 362.41 km/h
Answer:
New moment of inertia will be
Explanation:
It is given initially angular velocity 
Moment of inertia 
Angular momentum is equal to 
Now angular velocity is decreases to 
As we know that angular momentum is conserved
So 

So new moment of inertia will be 