Answer:
The answer is below
Step-by-step explanation:
From the graph, we can see that both segment 1 and segment 2 are positive slopes (as the time increases, the number of people increases)
Segment 1 is more steep than segment 2 (the number of people increases in segment 1 more than segment 2). This means that the number of people entering the arena in segment 1 was higher than the rate of people entering the arena in segment 2.
Answer:
The degrees of freedom is 11.
The proportion in a t-distribution less than -1.4 is 0.095.
Step-by-step explanation:
The complete question is:
Use a t-distribution to answer this question. Assume the samples are random samples from distributions that are reasonably normally distributed, and that a t-statistic will be used for inference about the difference in sample means. State the degrees of freedom used. Find the proportion in a t-distribution less than -1.4 if the samples have sizes 1 = 12 and n 2 = 12 . Enter the exact answer for the degrees of freedom and round your answer for the area to three decimal places. degrees of freedom = Enter your answer; degrees of freedom proportion = Enter your answer; proportion
Solution:
The information provided is:

Compute the degrees of freedom as follows:


Thus, the degrees of freedom is 11.
Compute the proportion in a t-distribution less than -1.4 as follows:


*Use a <em>t</em>-table.
Thus, the proportion in a t-distribution less than -1.4 is 0.095.
If x and 71 degrees are side by side, it can be a complementary if it is exactly 90 degrees, supplementary if it is 180 degrees....
You put them in fractions then cross multiple.
18/12 and 3/x so that's 36 equals 18x then you divide 36 by 18 which is 2.
Area= (length)(width)
divide by (length) on both sides.
(width)= (area)/(length).
Your best bet is treating area, length, and width as numbers. You can plug in numbers and take them out in the end. Hope this helps!