Answer:
d = w + 3 (first equation)
2d = 2w + 3 (second equation).
The second equation is equivalent to the first one.
In other words, two equations carry the same information as the first one, not more.
In the language of linear algebra, the system is dependent
Determine the percent of book she hasn't read.percent = 100% - percent she has read
percent = 100% - 34%
percent = 66%
She hasn't read 66% of the book.
Find the amount of page she hasn't read.page =

page =

page =

page =

page = 165
The number of page she hasn't read is 165. It's more than 125.
Answer:
Given the series,
∑ ∞ n = 1 − 4 ( − 1 / 2 ) n − 1
I think the series is summation from n = 1 to ∞ of -4(-1/2)^(n-1)
So,
∑ − 4 ( − ½ )^(n − 1). From n = 1 to ∞
There are different types of test to show if a series converges or diverges
So, using Ratio test
Lim n → ∞ (a_n+1 / a_n)
Lim n → ∞ (-4(-1/ 2)^(n+1-1) / -4(-1/2)^(n-1))
Lim n → ∞ ((-4(-1/2)^(n) / -4(-1/2)^(n-1))
Lim n → ∞ (-1/2)ⁿ / (-1/2)^(n-1)
Lim n→ ∞ (-1/2)^(n-n+1)
Lim n→ ∞ (-1/2)^1 = -1/2
Since the limit is less than 0, then, the series converge...
Sum to infinity
Using geometric progression formula
S∞ = a / 1 - r
Where
a is first term
r is common ratio
So, first term is
a_1 = -4(-½)^1-1 = -4(-½)^0 = -4 × 1
a_1 = -4
Common ratio r = a_2 / a_1
a_2 = 4(-½)^2-1 = -4(-½)^1 = -4 × -½ = 2
a_2 = 2
Then,
r = a_2 / a_1 = 2 / -4 = -½
S∞ = -4 / 1--½
S∞ = -4 / 1 + ½
S∞ = -4 / 3/2 = -4 × 2 / 3
S∞ = -8 / 3 = -2⅔
The sum to infinity is -2.67 or -2⅔
<h2>
Step-by-step explanation: PHEW THAT TOOK A WHILE LOL IM A FAST TYPER</h2>
Step-by-step explanation:

Two vector spaces V and W are said to be isomorphic if there exists an invertible linear transformation (aka an isomorphism) T from V to W.