well if 18 out of 25 like it, then the remaining 7 doesn't like it, namely 7 out of 25.
if we take 25 to be the 100%, what is 7 off of if in percentage?

Answer:
Option C. 4(20-16y): Each side measures 20-16y units.
Step-by-step explanation:
we know that
The perimeter of a square is equal to

where
b is the length side of the square
we have

substitute the given value in the formula

solve for b
Divide by 4 both sides

Rewrite the expression

<em>Alternative Method</em>
we have

Factor 4

so
Each side measures (20-16y) units.
Answer:
37
Step-by-step explanation:
The first thing is to calculate critical z factor
the alpha and the critical z score for a confidence level of 90% is calculated as follows:
two sided alpha = (100% - 90%) / 200 = 0.05
critical z factor for two sided alpha of .05 is calculated as follows:
critical z factor = z factor for (1 - .05) = z factor for (.95) which through the attached graph becomes:
critical z factor = 2.58
Now we have the following formula:
ME = z * (sd / sqrt (N) ^ (1/2))
where ME is the margin of error and is equal to 6, sd is the standard deviation which is 14 and the value of z is 2.58
N the sample size and we want to know it, replacing:
6 = 2.58 * (14 / (N) ^ (1/2))
solving for N we have:
N = (2.58 * 14/6) ^ 2
N = 36.24
Which means that the sample size was 37.
9514 1404 393
Answer:
274 mL
Step-by-step explanation:
Often medical solutions expressed as a percentage are not really a percentage as such. A percentage is the ratio of two quantities with the same units.
Here, the context given by the problem suggests the "25%" solution is really (25 g)/(100 mL). That is, the units are grams and milliliters--different units.
With that assumption, we want to find the volume (v) of solution needed to deliver 6 g of medicine. An appropriate proportion* is ...
v/(6 g) = (100 mL)/(25 g)
v = (6 g)(100 mL)/(25 g) = 24 mL
So, the total volume of the infusion is ...
250 mL +24 mL = 274 mL
_____
* The concentration is given in terms of g/mL, but we have used a proportion that is mL/g. The reason for that is we want the variable to be in the numerator of the ratio. The variable here represents volume, so we have written the proportion with volumes in the numerators.
Having the variable in the numerator means the equation can be solved in one step--by multiplying by its denominator.
i am certain that this is the answer