Answer:
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true
Step-by-step explanation:
Answer:
I believe this is the correct answer. e = 16
Answer as an inequality: 
Answer in interval notation: 
Answer in words: Set of positive real numbers
All three represent the same idea, but in different forms.
======================================================
Explanation:
Any log is the inverse of an exponential equation. Consider a general base b such that f(x) = b^x. The inverse of this is 
For the exponential b^x, we cannot have b^x = 0. We can get closer to it, but we can't actually get there. The horizontal asymptote is y = 0.
Because of this,
has a vertical asymptote x = 0 (recall that x and y swap, so the asymptotes swap as well). This means we can get closer and closer to x = 0 from the positive side, but never reach x = 0 itself.
The domain of
is x > 0 which in interval notation would be
. This is the interval from 0 to infinity, excluding both endpoints.
------------------------
The natural log function Ln(x) is a special type of log function where the base is b = e = 2.718 approximately.
So,

allowing all of what was discussed in the previous section to apply to this Ln(x) function as well.
------------------------
In short, the domain is the set of positive real numbers. We can't have x be 0 or negative.
We break all the bracket out :
-0.75 + 2/5 + 0.4 - 3/4
2/5 = 0.4
-3/4 = -0.75
So, we have : -0.75 + 0.4 + 0.4 - 0.75
= (-0.75 - 0.75) + (0.4 + 0.4) = -1.5 + 0.8 = -0.7
Answer:
![L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20%5Cdfrac%7B6%7D%7BS%5E2%2B1%7D%20%5B%5Csqrt%7B3%7D%20%5C%20S%20%2B1%20%5D)
Step-by-step explanation:
Given that:

recall that:
cos (A-B) = cos AcosB + sin A sin B
∴
![f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}]](https://tex.z-dn.net/?f=f%28t%29%20%3D%2012%20%5Bcos%5C%20%20t%20%5C%20%20cos%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%2B%20sin%20%5C%20t%20%20%5C%20sin%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5D)
![f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}]](https://tex.z-dn.net/?f=f%28t%29%20%3D%2012%20%5Bcos%20%5C%20%20t%20%5C%20%5Cdfrac%7B3%7D%7B2%7D%2B%20sin%20%20%5C%20t%20%20%5C%20sin%20%5Cdfrac%7B1%7D%7B2%7D%5D)

![L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20L%20%28%206%20%5Csqrt%7B3%7D%20%5C%20cos%20%5C%20%28t%29%20%2B%206%20%5C%20sin%20%5C%20%28t%29%20%5D)
![L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%206%20%5Csqrt%7B3%7D%20%5C%20L%20%5Bcos%20%5C%20%28t%29%20%5D%20%2B%206%5C%20L%20%5B%20sin%20%5C%20%28t%29%20%5D)



![L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20%5Cdfrac%7B6%7D%7BS%5E2%2B1%7D%20%5B%5Csqrt%7B3%7D%20%5C%20S%20%2B1%20%5D)