Any object when rotated by 360°, will look exactly the same
Answer:
It should be $378. sorry if I am wrong.
Step-by-step explanation:
Answer:
Step-by-step explanation:
The table shows a set of x and y values, thus showing a set of points we can use to find the equation.
1) First, find the slope by using two points and substituting their x and y values into the slope formula,
. I chose (-3, 13) and (0,17), but any two points from the table will work. Use them for the formula like so:

Thus, the slope is
.
2) Next, identify the y-intercept. The y-intercept is where the line hits the y-axis. All points on the y-axis have a x value of 0. Thus, (0,17) must be the y-intercept of the line.
3) Finally, write an equation in slope-intercept form, or
format. Substitute the
and
for real values.
The
represents the slope of the equation, so substitute it for
. The
represents the y-value of the y-intercept, so substitute it for 17. This will give the following answer and equation:

Dilation always preserves angle measures, the given statement best explains why the dilation of a triangle produces a similar triangle
<u>Step-by-step explanation:</u>
The dilation (similarity transformations) varies the size of the figure. This requires a midpoint and a scale factor k. The k value finds whether it is an increase or decrease.
- If | k |> 1, the dilation is an extension.
- If | k | <1 it is reduction.
The absolute value of k determines the size of the new image relative to the size of the original image. If the k is positive, the new and original image is on the same side of the center.
If k is negative, they are on both sides of the center. Its own image is always at the center of development. This support angle size, point equality, and collinearity. Does not maintain distance. In simple, dilation always give similar figures.
Answer:
The simple solutions are:
Right 6: (-2+6,-3) = (4,3)
Left 6: (-2-6,-3) = (-8,-3)
Up 6: (-2,-3+6) = (-2, 3)
Down 6: (-2,-3-6) = (-2,-9)
Those are for horizontal or vertical
line segments.
Step-by-step explanation: