1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nina [5.8K]
3 years ago
7

When writing expressions for complex numbers, what does i represent?

Mathematics
1 answer:
lubasha [3.4K]3 years ago
3 0

Answer: See below

Step-by-step explanation:

i is an imaginary number.

i=\sqrt{-1}

i^2=-1

You might be interested in
Help i don’t understand,
irina [24]

Answer:

If it is Area, the answer is:

A=6 (2x+1)

If it is Perimeter it is:

P= 3x+ 13

5 0
3 years ago
Which is larger, 52 or 33?
ra1l [238]

Answer:

52

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
In order to evaluate 7 sec(θ) dθ, multiply the integrand by sec(θ) + tan(θ) sec(θ) + tan(θ) . 7 sec(θ) dθ = 7 sec(θ) sec(θ) + ta
Maurinko [17]

Answer:

\int {7 \sec(\theta) } \, d\theta = 7\ln(\sec(\theta) + \tan(\theta)) + c

Step-by-step explanation:

The question is not properly formatted. However, the integral of \int {7 \sec(\theta) } \, d\theta is as follows:

<h3></h3>

\int {7 \sec(\theta) } \, d\theta

Remove constant 7 out of the integrand

\int {7 \sec(\theta) } \, d\theta = 7\int {\sec(\theta) } \, d\theta

Multiply by 1

\int {7 \sec(\theta) } \, d\theta = 7\int {\sec(\theta) * 1} \, d\theta

Express 1 as: \frac{\sec(\theta) + \tan(\theta) }{\sec(\theta) + \tan(\theta)}

\int {7 \sec(\theta) } \, d\theta = 7\int {\sec(\theta) * \frac{\sec(\theta) + \tan(\theta) }{\sec(\theta) + \tan(\theta)}} \, d\theta

Expand

\int {7 \sec(\theta) } \, d\theta = 7\int {\frac{\sec^2(\theta) + \sec(\theta)\tan(\theta) }{\sec(\theta) + \tan(\theta)}} \, d\theta

Let

u = \sec(\theta) + \tan(\theta)

Differentiate

\frac{du}{d\theta} = \sec(\theta)\tan(\theta) + sec^2(\theta)

Make d\theta the subject

d\theta = \frac{du}{\sec(\theta)\tan(\theta) + sec^2(\theta)}

So, we have:

\int {7 \sec(\theta) } \, d\theta = 7\int {\frac{\sec^2(\theta) + \sec(\theta)\tan(\theta) }{u}} \,* \frac{du}{\sec(\theta)\tan(\theta) + sec^2(\theta)}

Cancel out \sec(\theta)\tan(\theta) + sec^2(\theta)

\int {7 \sec(\theta) } \, d\theta = 7\int {\frac{1}{u}} \,du}}

Integrate

\int {7 \sec(\theta) } \, d\theta = 7\ln(u) + c

Recall that: u = \sec(\theta) + \tan(\theta)

\int {7 \sec(\theta) } \, d\theta = 7\ln(\sec(\theta) + \tan(\theta)) + c

8 0
3 years ago
Hexagon ABCDEF is congruent to hexagon GHIJKL.
dedylja [7]
216 degrees.
360 - 144 = 216.
6 0
4 years ago
What is the correct way to label the entire line segment shown​
Simora [160]

Answer:Yea looks like you have it already C

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • Ok these are the last ones
    7·2 answers
  • 3 x [ 32 = ( 4 + 4 ) x 6 Pls HELP ME ITS ALMOST DONE ​
    7·1 answer
  • Need help with these 3 math questions on functions please.
    10·1 answer
  • What the answer to f(x)=3x-1<br> G(x)=x^2-x-4<br> Findf(g(x)
    11·1 answer
  • Help?
    7·2 answers
  • Huilan is 7 years older than Thomas. The sum of their ages is 63. What is Thomas age
    6·1 answer
  • What tip would a waiter receive if a customer adds a 20% tip to a meal that costs $42.18?
    12·2 answers
  • ( Please help me on this question! )
    9·2 answers
  • Evaluate c - 2 when c = 7.<br> Stuck? Watch a video or use a hint.<br> What is my final answer
    6·1 answer
  • If f(x)=x-3 and g(x)=x^3 then f(g(3))
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!