Answer:
g = 0.85 m
Explanation:
g = 
were; g is the acceleration due to Earth's gravity, G is Newton's gravitation constant (6.674 x
N
), M is the mass of the earth (5.972 x
kg), and h is the distance of meteoroid to the earth.
h = 3.40 x R
= 3.40 x 6371 km
h = 21661.4 km
= 21661400 m
Thus,
g = 
= 
= 0.84944
g = 0.85 m
The acceleration due to the Earth's gravitation is 0.85 m
.
Answer:
time taken by the wave to reach the person is 0.2 s
Explanation:
As we know that the speed of the wave is given as

here we know that the wavelength of the wave is


now speed of the wave is given as


Now time taken by the wave to reach 5 m distance is



Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W
Answer:0.0704 kg
Explanation:
Given
initial Absolute pressure
=210+101.325=311.325



as the volume remains constant therefore



therefore Gauge pressure is 337.44-101.325=236.117 KPa
Initial mass 

Final mass 

Therefore
=0.91-0.839=0.0704 kg of air needs to be removed to get initial pressure back
Answer:

Explanation:
First, we calculate the work done by this force after the box traveled 14 m, which is given by:
![W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m](https://tex.z-dn.net/?f=W%3D%5Cint%5Climits%5E%7Bx_f%7D_%7Bx_0%7D%20%7BF%28x%29%7D%20%5C%2C%20dx%20%5C%5CW%3D%5Cint%5Climits%5E%7B14%7D_%7B0%7D%20%28%7B18N-0.530%5Cfrac%7BN%7D%7Bm%7Dx%7D%29%20%5C%2C%20dx%5C%5CW%3D%5B%2818N%29x-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7Bx%5E2%7D%7B2%7D%5D%5E%7B14%7D_%7B0%7D%5C%5CW%3D%2818N%2914m-%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B%2814m%29%5E2%7D%7B2%7D-%2818N%290%2B%280.530%5Cfrac%7BN%7D%7Bm%7D%29%5Cfrac%7B0%5E2%7D%7B2%7D%5C%5CW%3D252N%5Ccdot%20m-52N%5Ccdot%20m%5C%5CW%3D200N%5Ccdot%20m)
Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:

The box is initially at rest, so
. Solving for
:
