Answer:
a)6.7m/S
b)6.8m/s
Explanation:
Hello ! To solve the point b you must follow the steps below
1.Draw the slide taking into account its length and height and find the angle from which the swimmer is launched (see attached image)
2. Find the horizontal velocity (X) and vertical (Y) components (see attached image)
3) for the third step we must remember that as in the slide there is no horizontal acceleration the speed in X will remain constant at the end of the swimmer's path (Vx = 0.59m / s)
4)
the fourth step is to remember that vertically there is constant acceleration called gravity (g = 9.81m / s ^ 2), so to find the speed at the end of the route we use the following equation

where
Vfy= final verticaly speed
Vy=initial verticaly speed=0.59m/S
g=gravity=9.81m/S^2
y=height of slide=2.31m
solving

The last step is to add the velocity components vectorally at the end of the route with the following equation

point A
taking into account the previous steps we can infer that as the swimmer starts from rest, the velocity (Vx=Vy=O) is zero, so we should only use the formula for constant acceleration movement.

vy=0

Vfy=
=6.7m/s
The Geiger–Marsden experiment(s) (also called the Rutherford gold foil experiment) were a landmark series of experiments by which scientists discovered that every atom contains a nucleus where its positive charge and most of its mass are concentrated
Answer:
10 kilograms
Explanation:
The formula for mass
mass (kg)= momentum ( p) divided by velocity (v)
therefore this translates to 50 divided by 5
which gives the final answer as <u>10kgs</u>
Words less true are seldom if ever spoken.
Answer:
<h2>3.3 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 1.5 × 10 × 0.22
We have the final answer as
<h3>3.3 J</h3>
Hope this helps you