Explanation:
Given that,
Mass of ball, m = 0.425 kg
Initial speed of the ball, u = 12 m/s
Initial speed of a person, u' = 0
Mass of a person, m' = 68 kg
(a) Let V is the combined speed of the person and the ball. Using conservation of momentum as :

(b) If the ball hits the person and bounces off his chest, so afterwards it is moving horizontally at 9.00 m/s in the opposite direction,. Let v' is the speed of the person after the collision. So,

v = -9 m/s

Hence, this is the required solution.
Answer:
1. Yes, it can occur adiabatically.
2. The work required is: 86.4kJ
Explanation:
1. The internal energy of a gas is just function of its temperature, and the temperature changes between the states, so, the internal energy must change, but how could it be possible without heat transfer? This process may occur adiabatically due to the energy balance:

This balance tell us that the internal energy changes may occur due to work that, in this case, si done over the system.
2. An internal energy change of a gas may be calculated as:

Assuming
constant,


Answer:
initial magnitude will be 9 N and direction will be to the right
Explanation:
force= 9N
mass m= 330 grams
acceleartion = a
from newtons 2nd law of motion we write

dP is the chage in momentum dt is time taken and F is the Force applied

this shows that the rate of change of momentum is 9 N
we also know that F= ma
putting values we get

a= 27.27 m/sec^2
The direction of acceleration will along the direction of force applied. So will be the direction of change momentum as in F=ma, mass is the scalar quantity and direction of force dictates the direction of motion. Hence, initial magnitude will be 9N and direction will be to the right
Answer: B) He has too many independent variables.
Explanation: Nothing in the experiment is a constant or being measured.