Answer:
cos q = 3/5
Step-by-step explanation:
Standard position means the vertex (point or corner of the angle) is at (0,0) and one side of the angle is glued to the positive x-axis (facts, but not technical math terms) See image. Special triangles have all three sides nice and clean with whole number lengths, we call these Pythagorean triples. 3-4-5 is your most basic Pythagorean triple. So we don't even have to calculate the hypotenuse, see image. Now the triangle shown is easy to work with, using entry-level trig...cos = ADJ/HYP. So we get 3/5=.6 BUUuuuut, the angle q in the original problem is actually the giant angle, marked in yellow (see image) and we're in the fourth quadrant which means there's negative numbers all over the place. So just to be sure the answer is .6 and not -.6 Check your signs. One trick to remember is the ASTC markings in the quadrants. I use All Students Take Calculus, but what it means is in the first quadrant All the trig functions are positive. Only Sine (and fam) are positive in the 2nd quadrant. Tan (and fam) in the 3rd and Cos and fam in the 4th quadrant. It's a good quick check.
cos q = 3/5 OR cos q = .6
Symmetric property of an Equality
Answer:
x = 2
Step-by-step explanation:
These equations are solved easily using a graphing calculator. The attachment shows the one solution is x=2.
__
<h3>Squaring</h3>
The usual way to solve these algebraically is to isolate radicals and square the equation until the radicals go away. Then solve the resulting polynomial. Here, that results in a quadratic with two solutions. One of those is extraneous, as is often the case when this solution method is used.

The solutions to this equation are the values of x that make the factors zero: x=2 and x=-1. When we check these in the original equation, we find that x=-1 does not work. It is an extraneous solution.
x = -1: √(-1+2) +1 = √(3(-1)+3) ⇒ 1+1 = 0 . . . . not true
x = 2: √(2+2) +1 = √(3(2) +3) ⇒ 2 +1 = 3 . . . . true . . . x = 2 is the solution
__
<h3>Substitution</h3>
Another way to solve this is using substitution for one of the radicals. We choose ...

Solutions to this equation are ...
u = 2, u = -1 . . . . . . the above restriction on u mean u=-1 is not a solution
The value of x is ...
x = u² -2 = 2² -2
x = 2 . . . . the solution to the equation
_____
<em>Additional comment</em>
Using substitution may be a little more work, as you have to solve for x in terms of the substituted variable. It still requires two squarings: one to find the value of x in terms of u, and another to eliminate the remaining radical. The advantage seems to be that the extraneous solution is made more obvious by the restriction on the value of u.
Answer:
the required probability is 0.09
Option a) 0.09 is the correct Answer.
Step-by-step explanation:
Given that;
mean μ = 7
x = 4
the probability of exactly 4 bridge construction projects taking place at one time in this state = ?
Using the Poisson probability formula;
P( X=x ) = ( e^-μ × u^x) / x!
we substitute
P(X = 4) = (e⁻⁷ × 7⁴) / 4!
= 2.1894 / 24
= 0.0875 ≈ 0.09
Therefore the required probability is 0.09
Option a) 0.09 is the correct Answer.