m<SMJ + m<SME = 180° <em>(Linear pair) ⇒ </em>m<SMJ + 59° = 180° ⇒ m<SMJ = 121°
m<MJS ≅ m<EJA: <E + <A + <J = 180° ⇒ 90° + 48° + <J = 180° ⇒ <J = 42°
<u>m<JSM + m<SMJ + m<MJS = 180° </u><u><em> (Triangle sum) </em></u>
m<JSM + 121° + 42° = 180°
m<JSM + 163° = 180°
m<JSM = 17°
Answer: 17°
Answer:
The width of the floor is 10 ft.
Step-by-step explanation:
First, you have to form expressions of width and length in terms of w. With the given information :
width = w ft
length = (w - 2) ft
Given that the area of rectange is A = length × width so you have to subtitute the expressions and value into the formula :
A = l × w
80 = (w - 2) × w
w(w - 2) = 80
w² - 2w = 80
w² - 2w - 80 = 0
(w + 8)(w - 10) = 0
w + 8 = 0
w = -8 (rejected)
w - 10 = 0
w = 10
The answer is 32.07. Rounded to the nearest tenth is 32.1
Answer:
x=3, y=2
Step-by-step explanation:
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π and cos A = cos B · cos C
scratchwork:
A + B + C = π
A = π - (B + C)
cos A = cos [π - (B + C)] Apply cos
= - cos (B + C) Simplify
= -(cos B · cos C - sin B · sin C) Sum Identity
= sin B · sin C - cos B · cos C Simplify
cos B · cos C = sin B · sin C - cos B · cos C Substitution
2cos B · cos C = sin B · sin C Addition
Division
2 = tan B · tan C

<u>Proof LHS → RHS</u>
Given: A + B + C = π
Subtraction: A = π - (B + C)
Apply tan: tan A = tan(π - (B + C))
Simplify: = - tan (B + C)

Substitution: = -(tan B + tan C)/(1 - 2)
Simplify: = -(tan B + tan C)/-1
= tan B + tan C
LHS = RHS: tan B + tan C = tan B + tan C 