Answer:
V = 0.3724 m³
T = 27.836 N
Explanation:
Given :
m = 3.21 kg , W= 3.21 * 9.81 m / s² = 31.4901 N
ρ = 8.62 g / cm ³ = 8620 kg / m³
V = m / ρ = 3.21 kg / 8620 kg / m³
V = 0.3724 m³
when submerged the weight of brass cylinder is equal to the tension in string:
F = (0.3724m³) * (1000 kg / m³) * (9.81 m/s²²) = 3.653 ≈ 3.65 N
T = 31.4901 N - 3.65 N
T = 27.836 N
Explanation:
Given:
m = 1.673 × 10^-27 kg
Q = q = 1.602 × 10^-19 C
r = 0.75 nm
= 0.75 × 10^-9 m
A.
Energy, U = (kQq)/r
Ut = 1/2 mv^2 + 1/2 mv^2
1.673 × 10^-27 × v^2 = (8.99 × 10^9 × (1.602 × 10^-19)^2)/0.75 × 10^-9
v = 1.356 × 10^4 m/s
B.
F = (kQq)/r^2
F = m × a
1.673 × 10^-27 × a = ((8.99 × 10^9 × (1.602 × 10-19)^2)/(0.075 × 10^-9)^2
a = 2.45 × 10^17 m/s^2.
Ans: Beat Frequency = 1.97HzExplanation:
The fundamental frequency on a vibrating string is

<span> -- (A)</span>
<span>here, T=Tension in the string=56.7N,
L=Length of the string=0.66m,
m= mass = 8.3x10^-4kg/m * 0.66m = 5.48x10^-4kg </span>
Plug in the values in Equation (A)
<span>so </span>

<span> = 197.97Hz </span>
<span>the beat frequency is the difference between these two frequencies, therefore:
Beat frequency = 197.97 - 196.0 = 1.97Hz
-i</span>
Answer:
if I am correct, they indicate less steep terrain. think of it as the steeper the terrain the closer together the lines would be. hope that makes sense for you guys.