You are crossing the event horizon of a black hole
When you are feeling like spaghetti and you are normally only about 2 meters tall, you are now about 25 meters long, then look up over your head, you see things moving pretty quickly in the universe but that lasts only a brief instant, and then all contact with the universe is lost, you are crossing the event horizon of a black hole.
<h3>What happens when you are crossing the event horizon of a black hole?</h3>
- The point of no return is the black hole's event horizon.
- Anything that continues beyond this point will be absorbed by the black hole and disappear from the known universe forever.
- The black hole's gravity is so strong at the event horizon that it cannot be overcome or resisted by any mechanical force.
<h3>Is it possible to endure inside an event horizon?</h3>
- As a result, the individual would survive and gently float over the event horizon of the black hole without being harmed or stretched into a long, thin noodle.
<h3>What occurs beyond the horizon of the event?</h3>
- A singularity is a truly tiny point that lies beyond the event horizon where gravity is so strong that space-time itself is infinitely bent.
- The principles of physics as they exist presently break down at this point, making any hypotheses about what lies beyond mere conjecture.
To learn more about black hole visit:
brainly.com/question/27723143
#SPJ4
When silver is poured into the mould the it will solidify
In this process the phase of the Silver block will change from liquid to solid.
This phase change will lead to release in heat and this heat is known as latent heat of fusion.
The formula to find the latent heat of fusion is given as

here given that


now we can find the heat released


So it will release total heat of 55.5 kJ when it will solidify
Note the atom of the Oxygen is electrically neutral, meaning it has equal numbers of electrons and protons.
So if it gains 2 electrons, it would have excess of 2 electrons, hence its charge would be -2.
Option B.
Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.