Answers:
1A) Al203
1B) SF6
2) Fe203 - iron oxide
Answer:
a = 1.5*10^-3 m/s^2
x = 0.033m = 3.3cm
Explanation:
To calculate the acceleration and the distance traveled by the car you use the following formulas:
(1)
(2)
v: final velocity = 0,255 km/h
vo: initial velocity = 0 m/s
t: time = 3/4 min
a: acceleration = ?
x: distance
In order to use the equations (1) and (2) you first convert the units of the final velocity to m/s, and the time to seconds.

Next, you solve the equation (1) for the acceleration a:

With this value of a you can calculate the distance traveled by the car, by using the equation (2):

hence, the acceleration of the car is 1.5*10^-3 m/s^2 and the distance traveled in 3/4 min is 0.033m
Hello!
For the explanation of this energy conservation exercise, where we'll use <u>energy conservation law</u>, let's see what this principle proposes.
How you should know, mechanical energy conserves in every point, that is to say mechanical energy is same in A point like B point. (Mechanical energy will be represented by "Me")
Once time we know that, let's take the 220 Joules momentum like A point, and when 55 Joules momentum like B point.
Then, let's use the <u>energy conservation principle:</u>
Me(A) = Me(B)
- We know Mechanical energy in A point, so just lets replace according to our data:
220 J = Me(B)
- In B point, we know kinetic energy, but <u>we dont know gravitational potential energy</u>, so lets descompose Mechanical energy, into kinetic energy and gravitational potential energy:
220 J = Ke + Gpe
- We know kinetic energy value, so lets replace it:
220 J = 55 J + Gpe
- Finally, just clean Gpe and resolve it:
Gpe = 220 J - 55 J = 165 J
Gravitational potential energy is of One hundred sixty five Joules <u>(165 J).</u>
║Sincerely, ChizuruChan║
The remote control, and wireless transmissions