Explanation:
A single-replacement reaction replaces one element for another in a compound.
A double-replacement reaction exchanges the cations (or the anions) of two ionic compounds.
A precipitation reaction is a double-replacement reaction in which one product is a solid precipitate.
Solubility rules are used to predict whether some double-replacement reactions will occur.
Answer:
Are transferred completely from the valence shell of an element to the other
Explanation:
Basically, to form a chemical bond, you either transfer or you share. When you share, it is a case of covalent bonding which can be in several other forms. When there is a transfer, it is a case of ionic bonding.
The basic explanation for this is that while some atoms are electronically sufficient, some are electronically deficient. This means while some atoms are having an excess number of electrons, then some are having less number of electrons.
To satisfy both parties, there must be a transfer if electrons between the two parties. While the one with the excess numbers serves as the donor, the one with insufficient number of electrons serve as the acceptor
By applying some (compared to other things) simple steps<span>, </span>you can control and prevent soilwearing away<span>! </span>The four most common soil wearing away prevention methods are green plants<span>, </span>geotextiles<span>, </span>mulch<span>, </span>and (big walls to hold back water, soil, etc.)<span>. </span>Green plants<span>: </span>The simplest andmost natural way to prevent wearing away is through planting green plants<span>.</span>
Answer:
1.55×10²² molecules.
Explanation:
We'll begin by calculating the number of mole in 5.32 g of pure lead (Pb). This can be obtained as follow:
Mass of Pb = 5.32 g
Molar mass of Pb = 207 g/mol
Mole of Pb =?
Mole = mass /molar mass
Mole of Pb = 5.32/207
Mole of Pb = 0.0257 mole
Finally, we shall determine the number of molecules in 0.0257 mole of Pb. This can be obtained as follow:
From Avogadro's hypothesis,
I mole of Pb contains 6.02×10²³ molecules.
Therefore, 0.0257 mole will contain = 0.0257 × 6.02×10²³ = 1.55×10²² molecules.
Therefore, 5.32 g of pure lead (Pb) contains 1.55×10²² molecules.