Gold has a very high density of about 19.32g/cm^3 while Aluminum has a low density of 2.7 gm/cm^3 which means gold can pack more amount of matter in a comparatively small space as compared to Aluminum.
Answer:
we know that gas molecules move fast by hitting the container and they never meet,so if we have one single gas molecule then it will move slower . This is because it is alone in an empty container so until it hits the container to change it's movements it will make the process slower.
Read the explanation below to have a better idea based on the kinetic molecular theory.
Explanation:
Hello in this question we have a container and in it is a single gas molecule. So there is our gas molecule and in fact right there that violates the kinetic molecular theory. Because the kinetic molecular theory thinks of these particles as being dimension less points. Because there is so much space between particles. The particles themselves have such an insignificant volume as they can be thought of as dimension lys points. Okay. But anyway this particle is in rapid motion and this motion is essentially random. So it's moving and it will eventually hit the wall of its container. It's moving rapidly so it's going to hit it pretty quickly and when it hits the wall of that container Yeah, it is going to bounce off when it does that. It's a totally elastic collision. So that means there will be no energy transfer, no energy loss, no energy gained. It will just serve to change the direction of the particle. So when it hits the wall it's going to bounce back off the wall and continue in a straight line until it hits another wall and then it will bounce off that wall and it will continue moving in this motion in this motion its speed is related to the amount of energy it has and therefore its temperature. So if we add heat, it will move faster. If we remove heat or cool it down, it will move slower. So when we remove heat, it will move slower. The kinetic molecular theory says it will be constantly moving As long as it is above absolute zero. It's only at absolute zero or 0 Kelvin, where would stop moving. Okay, so all these things describe its motion. It's in rapid random motion in a straight line until it hits the wall of its container. Then it will rebound without a transfer of any energy. It will be totally elastic collision. If we were to heat it up, it would move faster. If we were to cool it down, it would move more slowly, we would have to cool it all the way down to absolute zero before it would stop moving. Right, so all of these things describe its motion. In terms of that kinetic molecular theory,
1. 1 M , 2 M , 1 M
2. 10 mol , 0.1 mol , 0.5 mol
3. 0.5 L , 6.6 L , 5/21 L
M = mol/L
Answer:
2.
Explanation:
When you put the paper in a solution, it will turn blue if it is basic, or red if it is acidic. If it does not change color, it is fairly neutral.
C. PH3 represents a compound commonly known as phosphine, whose IUPAC name is phosphorus trihydride.
<h3>What type of bond is PH3?</h3>
The electronegativity of PH3 found in the Periodic Table of the Period attracts covalent electron pairs and creates covalent bonds. However, because the electrons are not bound, asymmetrical rate distribution occurs. Therefore, PH3 is a polar molecule with a non-polar covalent bond and currently has no polar bond.
<h3 /><h3>What defines a covalent bond?</h3>
A covalent bond consists of sharing one or more electron pairs between two atoms. These electrons are attracted to two nuclei at the same time. Covalent bonds are formed when the difference in electronegativity between two atoms is too small for electron transfer to form ions.
Click here for more information on covalent bonds brainly.com/question/12732708
# SPJ10