Answer:
Hypothesis---experiments----results----conclusion.
Explanation:
First we make a hypothesis means a statement about why the tree looks unhealthy. In this segment of scientific method we have to test the hypothesis through experimentation. After that we have to take the readings of various parts of the tree and analyze the data to find out the problem. In the next step, we have to made the results on the basis of the data that is obtained. In the last we have to write the conclusion of the analysis and see the hypothesis.
they would be more detailed? what type of cells though?
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
It's known as the greenhouse effect.
<h3>Answer:</h3>
Limiting reactant is Lithium
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of Lithium as 1.50 g
- Mass of nitrogen is 1.50 g
We are required to determine the rate limiting reagent.
- First, we write the balanced equation for the reaction
6Li(s) + N₂(g) → 2Li₃N
From the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Second, we determine moles of Lithium and nitrogen given.
Moles = Mass ÷ Molar mass
Moles of Lithium
Molar mass of Li = 6.941 g/mol
Moles of Li = 1.50 g ÷ 6.941 g/mol
= 0.216 moles
Moles of nitrogen gas
Molar mass of Nitrogen gas is 28.0 g/mol
Moles of nitrogen gas = 1.50 g ÷ 28.0 g/mol
= 0.054 moles
- According to the equation, 6 moles of Lithium reacts with 1 mole of nitrogen.
- Therefore, 0.216 moles of lithium will require 0.036 moles (0.216 moles ÷6) of nitrogen gas.
- On the other hand, 0.054 moles of nitrogen, would require 0.324 moles of Lithium.
Thus, Lithium is the limiting reagent while nitrogen is in excess.