Answer: E) Acceleration, net force
Explanation: In order to explain this problem we have to consirer that the uniform circulat motion has constant angular velocity (ω) and the vector velocity is changed its direction for any point that cover the circle but its modulus is contant and its value is v=ω*R. In order to ensure these conditions, the net force also the accelaration called centripetal must point to the center of the circular trajectory.
Answer:
The first picture is B The second picture electric current is the 1st one Voltage is the last one so that leaves resistance the middle picture. The last picture is A
Explanation:
Answer:
Distance = 16.9 m
Explanation:
We are given;
Power; P = 70 W
Intensity; I = 0.0195 W/m²
Now, for a spherical sound wave, the intensity in the radial direction is expressed as a function of distance r from the center of the sphere and is given by the expression;
I = Power/Unit area = P/(4πr²)
where;
P is the sound power
r is the distance.
Thus;
Making r the subject, we have;
r² = P/4πI
r = √(P/4πI)
r = √(70/(4π*0.0195))
r = √285.6627
r = 16.9 m
Answer:
-0.105 m/s
Explanation:
Given that
Mass of the astronaut, m(a) = 68.5 kg
Mass of the tool, m(t) = 2.25 kg
Speed of the tool after it is thrown, v(t) = 3.20 m/s
We know that momentum of a particle,
p = mv
See the attachment for calculations
Therefore, the speed is 0.105 m/s and it moves in the opposite direction.