Answer: C= (3,2) and D=(2.2, 2.8)
Step-by-step explanation:
The coordinates of point P(x,y) divides a line segment having end points M
and N
in m:n will be :-

Given : The endpoints of AB are A(1,4) and B(6,-1).
If point C divides AB in the ratio 2 : 3, the coordinates of point C will be :-

Simplify,

Thus , coordinate of C= (3,2)
If point D divides AC in the ratio 3 : 2, the coordinates of point D will be :-

Simplify,

Thus , coordinate of D= (2.2,2.8)