Answer:
Step-by-step explanation:
Step-by-step explanation:
First, you recognize the algorithm for the equation: A=P(1+r)^n. This is the algorithm for interest. P is the amount of initial money (in this case, 6500), r is the interest rate (6%, or 0.06), and n is the number of times it is being compounded. Since half a year is given to me, 6 months is what I will be using, or just 6.
Next, plug in the numbers. The equation is now: A=6500(1+0.06)^6.
Now time to solve. First add what's in the parenthesis, and put it to the power of 6, for 6 months. Then multiply that amount to the initial dollar amount; 6500. This will leave you with 9,220.37.
let's notice something on this hyperbola, the fraction that is positive, is the fraction with the "y" variable, that simply means that the hyperbola is opening vertically, namely runs over the y-axis or it has a vertical traverse axis, which means, that, the foci will be a certain "c" distance from the center over the y-axis, well, with that mouthful, let's proceed.
![\bf \textit{hyperbolas, vertical traverse axis } \\\\ \cfrac{(y- k)^2}{ a^2}-\cfrac{(x- h)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h, k\pm a)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ asymptotes\quad y= k\pm \cfrac{a}{b}(x- h) \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bhyperbolas%2C%20vertical%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%2C%20k%5Cpm%20a%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%5C%5C%20asymptotes%5Cquad%20y%3D%20k%5Cpm%20%5Ccfrac%7Ba%7D%7Bb%7D%28x-%20h%29%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)
![\cfrac{(y-3)^2}{1}-\cfrac{(x+2)^2}{4}=1\implies \cfrac{[y-3]^2}{1^2}-\cfrac{[x-(-2)]^2}{2^2}=1~~ \begin{cases} h=-2\\ k=3\\ a=1\\ b=2 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ c=\sqrt{a^2+b^2}\implies c=\sqrt{1+4}\implies c=\sqrt{5} \\\\\\ \stackrel{\textit{so then the foci are at}}{(-2~~,~~3\pm \sqrt{5})}\qquad \qquad \qquad \stackrel{\textit{and its vertices are at }}{(-2~~,~~3\pm 1)}\implies \begin{cases} (-2,4)\\ (-2,2) \end{cases}](https://tex.z-dn.net/?f=%5Ccfrac%7B%28y-3%29%5E2%7D%7B1%7D-%5Ccfrac%7B%28x%2B2%29%5E2%7D%7B4%7D%3D1%5Cimplies%20%5Ccfrac%7B%5By-3%5D%5E2%7D%7B1%5E2%7D-%5Ccfrac%7B%5Bx-%28-2%29%5D%5E2%7D%7B2%5E2%7D%3D1~~%20%5Cbegin%7Bcases%7D%20h%3D-2%5C%5C%20k%3D3%5C%5C%20a%3D1%5C%5C%20b%3D2%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20c%3D%5Csqrt%7Ba%5E2%2Bb%5E2%7D%5Cimplies%20c%3D%5Csqrt%7B1%2B4%7D%5Cimplies%20c%3D%5Csqrt%7B5%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bso%20then%20the%20foci%20are%20at%7D%7D%7B%28-2~~%2C~~3%5Cpm%20%5Csqrt%7B5%7D%29%7D%5Cqquad%20%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Band%20its%20vertices%20are%20at%20%7D%7D%7B%28-2~~%2C~~3%5Cpm%201%29%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%28-2%2C4%29%5C%5C%20%28-2%2C2%29%20%5Cend%7Bcases%7D)
now let's check for the asymptotes.
![\bf y=3\pm \cfrac{1}{2}[x-(-2)]\implies y=3\pm \cfrac{1}{2}(x+2) \\\\[-0.35em] ~\dotfill\\\\ y=3+ \cfrac{1}{2}(x+2)\implies y=3+\cfrac{x+2}{2}\implies y=\cfrac{6+x+2}{2} \\\\\\ y=\cfrac{x+8}{2}\implies y=\cfrac{1}{2}x+4 \\\\[-0.35em] ~\dotfill\\\\ y=3- \cfrac{1}{2}(x+2)\implies y=3-\cfrac{(x+2)}{2}\implies y=\cfrac{6-(x+2)}{2} \\\\\\ y=\cfrac{6-x-2}{2}\implies y=\cfrac{-x+4}{2}\implies y=-\cfrac{1}{2}x+2](https://tex.z-dn.net/?f=%5Cbf%20y%3D3%5Cpm%20%5Ccfrac%7B1%7D%7B2%7D%5Bx-%28-2%29%5D%5Cimplies%20y%3D3%5Cpm%20%5Ccfrac%7B1%7D%7B2%7D%28x%2B2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%2B%20%5Ccfrac%7B1%7D%7B2%7D%28x%2B2%29%5Cimplies%20y%3D3%2B%5Ccfrac%7Bx%2B2%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B6%2Bx%2B2%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7Bx%2B8%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B1%7D%7B2%7Dx%2B4%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3-%20%5Ccfrac%7B1%7D%7B2%7D%28x%2B2%29%5Cimplies%20y%3D3-%5Ccfrac%7B%28x%2B2%29%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B6-%28x%2B2%29%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B6-x-2%7D%7B2%7D%5Cimplies%20y%3D%5Ccfrac%7B-x%2B4%7D%7B2%7D%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B2%7Dx%2B2)
Answer:
1/2
Step-by-step explanation:
Theres 2 odd numbers on the wheel out of 4, so half the wheel is odd numbers, so theres a 50% chance of it landing onto a odd number which is equivalent to 1/2