1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
14

Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic colli

sion. Momentum is conserved. Object A has a mass of mA = 18.5 kg and an initial velocity of v0A = 8.15 m/s, due east. Object B, however, has a mass of mB = 30.5 kg and an initial velocity of v0B = 5.00 m/s, due north. Find the magnitude of the final velocity of the two-object system after the collision.
Physics
2 answers:
morpeh [17]3 years ago
8 0

Answer:

v =4.36 m/s

Explanation:

given,

mass of object A = 18.5 Kg

initial velocity of object A = 8.15 m/s in east

mass of object B = 30.5 kg

initial velocity of object B = 5 m/s

P = P_A+P_B

P = m_Av_A\widehat{i} + m_B v_B\widehat{j}

P = 18.5\times 8.15 \widehat{i} + 30.5\times 5\widehat{j}

P = 150.775 \widehat{i} + 152.5 \widehat{j}

P = \sqrt{150.775^2+152.5^2}

P = 214. 45 N s

velocity after collision is equal to

v =\dfrac{214.45}{18.5+30.5}

v =4.36 m/s

hence, velocity after collision is equal to 4.36 m/s

Serhud [2]3 years ago
8 0

Answer:

The magnitude of the final velocity of the two-object system is v=4.37\frac{m}{s}

Explanation:

As the Momentum is conserved, <u>we can compare the instant before the collision, and the instant after</u>. Also, we have to take in account the two components of the problem (x-direction and y-direction).

To do that, we put our <em>0 of coordinates where the collision takes place</em>.

So, for the initial momentum we have that

p_{ix}=m_{a}v_{0a}+0

p_{iy}=0+m_{b}v_{0b}

Now, this is <em>equal to the final momentum</em> (in each coordinate)

p_{fx}=(m_{a}+m_{b}) v_{fx}

p_{fy}=(m_{a}+m_{b}) v_{fy}

So, <u>we equalize each coordinate and get each final velocity</u>

m_{a}v_{0a}=(m_{a}+m_{b}) v_{fx} \Leftrightarrow v_{fx}=\frac{m_{a}v_{0a}}{(m_{a}+m_{b})}

m_{b}v_{0b}=(m_{a}+m_{b}) v_{fy} \Leftrightarrow v_{fy}=\frac{m_{b}v_{0b}}{(m_{a}+m_{b})}

Finally, <em>to calculate the magnitude of the final velocity</em>, we need to calculate

v_{f}=\sqrt{(v_{fx})^{2}+(v_{fy})^{2}}

which, replacing with the previous results, is

v_{f}=\sqrt{(v_{fx})^{2}+(v_{fy})^{2}}=(\sqrt{(\frac{18.5*8.15}{49})^{2}+(\frac{30.5*5.00}{49})^{2}})\frac{m}{s}

Therefore, the outcome is

v_{f}=4.37\frac{m}{s}

You might be interested in
Two different sources of radiation give the same dose equivalent in Sv. Does this mean that the radiation from each source has t
Alisiya [41]

The product of the dosage Gy and relative biological efficiency yields a radiation dose equivalent Sv (RBE).

Sv =dose in Gy * RBE Sv=dose in GyRBE

The quantity of ionising energy absorbed by 1 text kg1 kg of tissue is defined as a radiation dose Gy. While RBE is a measure of a specific dose's biological effect relative to the biological effect of an equal quantity of X rays.

<h3>What is radiation?</h3>

Radiation is energy that moves through space at the speed of light from a source. This energy is coupled with an electric and magnetic field, and it exhibits wave-like qualities. Radiation is sometimes known as "electromagnetic waves."

Nature has a diverse variety of electromagnetic radiation. One example is visible light.

X-rays and gamma rays are extremely energetic. They may take electrons from atoms when they engage with them, causing the atom to become ionised.

learn more about Radiation refer:

brainly.com/question/893656

#SPJ4

5 0
2 years ago
How long does light take to travel from the sun to earth? heres the exact question: light travels at 300,000 km.s. The sun is a
Artist 52 [7]
I've heard it takes around 8 min
4 0
3 years ago
In an electrochemical cell, the anode is ____.
harkovskaia [24]
A) the electrode at which oxidation takes place
3 0
3 years ago
if you have to apply 40 n of force on a crowbar to lift a 400 n rock what is the actual machanical andvatage of the crow bar
Eduardwww [97]
M.A. = 400/40

M.A. = 10

Hope this helps!
7 0
3 years ago
Which is the best example of potential energy?
svetoff [14.1K]
First one, holding a basketball in the air. Potential energy is the energy it has mostly from gravity. The further you go from the center of mass, the more energy.
8 0
3 years ago
Read 2 more answers
Other questions:
  • What causes two distinct pressure zones between the equator and the poles?
    14·2 answers
  • A stone is dropped at t = 0. A second stone, with 6 times the mass of the first, is dropped from the same point at t = 160 ms. (
    10·1 answer
  • The volume of a gas is 200.0 mL at 275 K and 92.1 kPa. Find its volume at STP.
    5·1 answer
  • North Africa is famous for its hand-woven carpets.<br><br> A-true <br><br> B-false
    15·1 answer
  • A block of mass 0.249 kg is placed on top of a light, vertical spring of force constant 4 975 N/m and pushed downward so that th
    5·1 answer
  • If a boy lifts a mass of 6kg to a height of 10m and travels horizontally with a constant velocity of 4.2m/s, calculate the work
    7·1 answer
  • Difference between uniform motion and non uniform motion <br>​
    11·2 answers
  • If neutron stars are squeezed harder they collapse into black hole; how would this transition occur?
    15·1 answer
  • Here is extra free p-o-i-n-t-s hope yall have a wonder full day!
    9·2 answers
  • A +13.4 nC charge is located at (0,9.4) cm and a -4.23 nC charge is located (4.99, 0) cm. Where would a -14.23 nC charge need to
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!