1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mama L [17]
3 years ago
14

Object A is moving due east, while object B is moving due north. They collide and stick together in a completely inelastic colli

sion. Momentum is conserved. Object A has a mass of mA = 18.5 kg and an initial velocity of v0A = 8.15 m/s, due east. Object B, however, has a mass of mB = 30.5 kg and an initial velocity of v0B = 5.00 m/s, due north. Find the magnitude of the final velocity of the two-object system after the collision.
Physics
2 answers:
morpeh [17]3 years ago
8 0

Answer:

v =4.36 m/s

Explanation:

given,

mass of object A = 18.5 Kg

initial velocity of object A = 8.15 m/s in east

mass of object B = 30.5 kg

initial velocity of object B = 5 m/s

P = P_A+P_B

P = m_Av_A\widehat{i} + m_B v_B\widehat{j}

P = 18.5\times 8.15 \widehat{i} + 30.5\times 5\widehat{j}

P = 150.775 \widehat{i} + 152.5 \widehat{j}

P = \sqrt{150.775^2+152.5^2}

P = 214. 45 N s

velocity after collision is equal to

v =\dfrac{214.45}{18.5+30.5}

v =4.36 m/s

hence, velocity after collision is equal to 4.36 m/s

Serhud [2]3 years ago
8 0

Answer:

The magnitude of the final velocity of the two-object system is v=4.37\frac{m}{s}

Explanation:

As the Momentum is conserved, <u>we can compare the instant before the collision, and the instant after</u>. Also, we have to take in account the two components of the problem (x-direction and y-direction).

To do that, we put our <em>0 of coordinates where the collision takes place</em>.

So, for the initial momentum we have that

p_{ix}=m_{a}v_{0a}+0

p_{iy}=0+m_{b}v_{0b}

Now, this is <em>equal to the final momentum</em> (in each coordinate)

p_{fx}=(m_{a}+m_{b}) v_{fx}

p_{fy}=(m_{a}+m_{b}) v_{fy}

So, <u>we equalize each coordinate and get each final velocity</u>

m_{a}v_{0a}=(m_{a}+m_{b}) v_{fx} \Leftrightarrow v_{fx}=\frac{m_{a}v_{0a}}{(m_{a}+m_{b})}

m_{b}v_{0b}=(m_{a}+m_{b}) v_{fy} \Leftrightarrow v_{fy}=\frac{m_{b}v_{0b}}{(m_{a}+m_{b})}

Finally, <em>to calculate the magnitude of the final velocity</em>, we need to calculate

v_{f}=\sqrt{(v_{fx})^{2}+(v_{fy})^{2}}

which, replacing with the previous results, is

v_{f}=\sqrt{(v_{fx})^{2}+(v_{fy})^{2}}=(\sqrt{(\frac{18.5*8.15}{49})^{2}+(\frac{30.5*5.00}{49})^{2}})\frac{m}{s}

Therefore, the outcome is

v_{f}=4.37\frac{m}{s}

You might be interested in
What are the folds called inside the mitochondria?
max2010maxim [7]
The inner membrane has many overlapping folds called cristae. Inside the inner membrane there is the mitochondrial matrix, it contains enzymes that are used in creating ATP. 
You're welcome. :) 

7 0
3 years ago
Read 2 more answers
Teams a and b are in a tug of war challenge. Team a wins. What can be said about team a
bekas [8.4K]

Answer:

Team A used more force.

Explanation:

8 0
3 years ago
Read 2 more answers
The drawing shows a wire composed of three segments, AB, BC, and CD. There is a current of I = 2.0 A in the wire. There is also
alexdok [17]

Answer:

The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.

In fact, the magnetic force exerted by the magnetic field on the wire is

where I is the current in the wire, L the length of the wire, B the magnetic field intensity and  the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is  and so , therefore the magnetic force is zero: F=0.

7 0
3 years ago
A 545-kg satellite is in a circular orbit about Earth at a height above Earth equal to Earth's mean radius. (a) Find the satelli
Art [367]

Answer

given,

mass of satellite = 545 Kg

R = 6.4 x 10⁶ m

H = 2 x 6.4 x 10⁶ m

Mass of earth = 5.972 x 10²⁴ Kg

height above earth is equal to earth's mean radius

a) satellite's orbital velocity

   centripetal force acting on satellite = \dfrac{mv^2}{r}

     gravitational force = \dfrac{GMm}{r^2}

    equating both the above equation

    \dfrac{mv^2}{r} = \dfrac{GMm}{r^2}

      v = \sqrt{\dfrac{GM}{r}}

      v = \sqrt{\dfrac{6.67 \times 10^{-11}\times 5.972 \times 10^{24}}{2 \times 6.4 \times 10^6}}

          v = 5578.5 m/s

b) T= \dfrac{2\pi\ r}{v}

   T= \dfrac{2\pi\times 2\times 6.4 \times 10^6}{5578.5}

   T= \dfrac{2\pi\times 2\times 6.4 \times 10^6}{5578.5}

          T = 14416.92 s

          T = \dfrac{14416.92}{3600}\ hr

          T = 4 hr

c) gravitational force acting

  F = \dfrac{GMm}{r^2}

  F = \dfrac{6.67 \times 10^{-11}\times 545 \times 5.972 \times 10^{24} }{(6.46 \times 10^6)^2}

     F = 5202 N

4 0
3 years ago
A good description of magnets would be, "Magnets are
madreJ [45]
B-things that can attract iron.
5 0
3 years ago
Other questions:
  • Pretend a system is having Transverse waves. And those transverse waves on a string have wave speed 8.00 m/s amplitude 0.0700m a
    15·1 answer
  • The half-life of carbon-14 is 5370 years. The carbon-14 levels in a fossil indicate that 6 half-lives have passed. How old is th
    6·2 answers
  • A wave has a distance between its peaks of 0.4 meters at a speed of 10 meters per second. What is the wave's frequency, in hertz
    11·1 answer
  • Dos masas están conectadas por una cuerda ligera que pasa por una polea sin rozamiento. Determine la aceleración de las masas y
    7·1 answer
  • 1 . A farmer moves along the boundary of his rectangular field of side 10m x 20m . farmer covers 1m in 1sec . what will be the m
    8·1 answer
  • What would we do if we didn't have solar energy?
    12·2 answers
  • After an oil spill in the ocean, what happens to bacteria that break down the oil?
    9·1 answer
  • HELP ME PLZ I NEED TO PASS
    15·2 answers
  • Compared to the amount of radiation received from the Sun, about how much radiation does the surface of the earth receive from t
    15·1 answer
  • A laboratory experiment produces a double-slit interference pattern on a screen. If the screen is moved farther away from the sl
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!