Answer:
a) Backward -
, Forward -
, Directly sideways -
, b) Backward -
, Forward -
, Directly sideways -
.
Explanation:
a) All scenarios are analyzed by means of the Principle of Momentum Conservation and the Impact Theorem.
Case I - Backward


Case II - Forward


Case III - Directly sideways

The magnitude of the change of the probe's translational momentum is:

b) The change in kinetic energy is given by the Work-Energy Theorem:
Case I - Backward
The final speed of the probe is:


The change in kinetic energy is:
![\Delta K = \frac{1}{2} \cdot (2500\,kg)\cdot \left[(222\,\frac{m}{s} )^{2}-(300\,\frac{m}{s} )^{2} \right]](https://tex.z-dn.net/?f=%5CDelta%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20%282500%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%28222%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%28300%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%5Cright%5D)

Case II - Forward
The final speed of the probe is:


The change in kinetic energy is:
![\Delta K = \frac{1}{2} \cdot (2500\,kg)\cdot \left[(378\,\frac{m}{s} )^{2}-(300\,\frac{m}{s} )^{2} \right]](https://tex.z-dn.net/?f=%5CDelta%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20%282500%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%28378%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%28300%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%5Cright%5D)

Case III - Directly sideways
The final speed of the probe in the direction perpendicular to the motion line is:


The change in kinetic energy is:
![\Delta K = \frac{1}{2} \cdot (2500\,kg)\cdot \left[(300\,\frac{m}{s} )^{2} + (78\,\frac{m}{s} )^{2} -(300\,\frac{m}{s} )^{2} \right]](https://tex.z-dn.net/?f=%5CDelta%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20%282500%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%28300%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%2B%20%2878%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20-%28300%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%20%5Cright%5D)
