Answer:
342 m/s
Explanation:
The velocity of sound in air is approximated as:
v ≈ 331.4 + 0.6 T
where v is the velocity in m/s and T is the temperature in Celsius.
At T = 18:
v ≈ 331.4 + 0.6 (18)
v ≈ 342.2
The velocity is approximately 342 m/s.
Complete question:
if two point charges are separated by 1.5 cm and have charge values of +2.0 and -4.0 μC, respectively, what is the value of the mutual force between them.
Answer:
The mutual force between the two point charges is 319.64 N
Explanation:
Given;
distance between the two point charges, r = 1.5 cm = 1.5 x 10⁻² m
value of the charges, q₁ and q₂ = 2 μC and - μ4 C
Apply Coulomb's law;

where;
F is the force of attraction between the two charges
|q₁| and |q₂| are the magnitude of the two charges
r is the distance between the two charges
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²

Therefore, the mutual force between the two point charges is 319.64 N
Answer:
Your answer would be
A person 40 cm- blows into the left end of the pipe to eject the marshmallow from the right end. ... A strain of sound waves is propagated along an organ pipe and gets reflected from an. play · like-icon ... The velocity of sound in air is 340ms^(-1). ... The two pipes are submerged in sea water, arranged as shown in figure. Pipe.Explanation:
I belive this is the answer sorry if im wrong!
Explanation:
Michael should put the vase at the bottom of the shelf to reduce the potential energy because the height of the vase to the floor is nearly zero.
I believe the correct answer is d. thermosphere.