1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tasya [4]
1 year ago
6

What is a sea breeze ?​

Physics
2 answers:
Vikentia [17]1 year ago
3 0

Answer:

a sea breeze is a blowing breeze from sea towards land during the day

WINSTONCH [101]1 year ago
3 0

Answer:

Wind that comes from the sea in day time

Explanation:

__________________________________________________________
To understand what is a sea breeze, you first need to understand what causes a sea breeze to happen.  

Because of the sea's heat capacity, the air over the sea is usually very cool and the air in the sea is lower temperature, which have a higher pressure.  

When higher pressure moves into the local urban areas, which is usually hot and definitely warmer than the sea's temperature which has a lower pressure.

When the lower pressure come in contact with the higher pressure air, It creates wind. In this case is called a sea breeze.
__________________________________________________________

Hope this helped :)

You might be interested in
A 4.0 m length of gold wire is connected to a 1.5 V battery, and a current of 4.0 mA flows through it. What is the diameter of t
sladkih [1.3K]

Explanation:

Given that,

Length of gold wire, l = 4 m

Voltage of battery, V = 1.5 V

Current, I = 4 mA

The resistivity of gold, \rho=2.44\times 10^{-8}\ \Omega-m

Resistance in terms of resistivity is given by :

R=\dfrac{\rho l}{A}

Also, V = IR

So,

\dfrac{V}{I}=\dfrac{\rho l}{A}

A is area of wire,

\dfrac{V}{I}=\dfrac{\rho l}{\pi r^2}, r is radius, r = d/2 (diameter=d)

\dfrac{V}{I}=\dfrac{\rho l}{\pi (d/2)^2}\\\\\dfrac{V}{I}=\dfrac{4\rho l}{\pi d^2}\\\\d=\sqrt{\dfrac{4\rho l I}{V\pi}} \\\\d=\sqrt{\dfrac{4\times 2.44\times 10^{-8}\times 4\times 4\times 10^{-3}}{1.5\times \pi}} \\\\d=18.2\ \mu m

Out of four option, near option is (C) 17 μm.

6 0
2 years ago
During your summer internship for an aerospace company, you are asked to design a small research rocket. The rocket is to be lau
Viktor [21]

Answer:

6.75 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration = 16 m/s²

g = Acceleration due to gravity = 9.81 m/s²

Let y be the distance the rocket is accelerating

960-y is the distance traveled in free fall

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 16\times y+0^2}\\\Rightarrow v^2=32y\ m/s

In free fall

v^2-u^2=2g(960-y)\\\Rightarrow 0-32y=2g(960-y)\\\Rightarrow -32y=2\times -9.81(960-y)\\\Rightarrow 960-y=\dfrac{-32}{2\times -9.81}y\\\Rightarrow 960-y=1.63098878695y\\\Rightarrow 960=2.63098878695y\\\Rightarrow y=\dfrac{960}{2.63098878695}\\\Rightarrow y=364.881828749\ m

The distance the rocket will keep accelerating is 364.881828749 m

After which it will travel 960-364.881828749 = 595.118171251 m in free fall

s=ut+\frac{1}{2}at^2\\\Rightarrow 364.881828749=0t+\frac{1}{2}\times 16\times t^2\\\Rightarrow t=\sqrt{\frac{364.881828749\times 2}{16}}\\\Rightarrow t=6.75353452598\ s

The time the rocket is accelerating is 6.75 seconds

5 0
3 years ago
Cuando una persona sube y baja una escalera, Cuanto vale su desplazamiento y cual es la medida de su trayectoria.
adoni [48]

Answer:

Primero, definimos el desplazamiento como la distancia entre la posición final y la posición inicial.

Así, si comenzamos abajo, luego subimos la escalera, y luego bajamos, la posición final y la posición inicial serán la misma

por lo que el desplazamiento es igual a cero.

La medida recorrida es el espacio total recorrido.

Es decir, si entre el principio y el final de la escalera hay una distancia D.

La persona que sube y baja, recorre esta distancia dos veces.

Entonces cuando una persona sube y baja la escalera, la medida de su trayectoria será 2*D.

8 0
3 years ago
The conservation laws, show ift<br>te-te​
FinnZ [79.3K]

Answer:

Explanation:

In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. The exact conservation laws include conservation of energy, and conservation of linear momentum, and also conservation of angular momentum, aswell as the conservation of electric charge

7 0
3 years ago
Imagine an alternate universe where the value of the Planck constant is . In that universe, which of the following objects would
HACTEHA [7]

Question: The planck constant was not given. In this calculation, planck constant of 6.62607*10^-9 Js  is used for the calculation.

Answer:

(a) A virus -------------Classical

(b) A buckyball -----Classical

(c) A mosquito ------ Quantum

(d) A turtle  ------------Quantum

Explanation:

 Calculating the wavelength using the formula;

λ= h/(mv)

where

λ= Wavelength

h = Planck Constant = 6.62607*10^-9 Js

m = mass in kg

v = velocity in m/s

Virus size = 280. nm = 2.80*10⁻⁷ m

a)

A Virus:

m = 9.4 x 10-17 g 9.4*10⁻²⁰ kg

v = 0.50 µm/s = 5 *10⁻⁷ m/s

h = 6.62607*10^-9 Js

Virus size = 280 nm = 2.80*10⁻⁷ m

Substituting into the formula; we have

λ= h/(mv)

λ= 6.62607*10^-9/ (9.4*10⁻²⁰* 5 *10⁻⁷)

  = 6.62607*10^-9/4.7*10^-26

  = 1.4*10^17 m

Classical : Wavelength is bigger than it's size

(b)

A buckyball

m = 1.2 x 10-21 g = 1.2 *10⁻²⁴ kg

V = 37 m/s

Size = 0.7 nm = 7*10⁻¹⁰ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ ( 1.2 *10⁻²⁴* 37)

  =  6.62607*10^-9/4.44*10^-23

  = 1.49 *10^14 m

Classical : Wavelength is bigger than it's size

(c)

A mosquito

Mass = 1.0 mg = 1*10⁻⁶ kg

v = 1.1 m/s

Size =  6.3 mm = 6.3*10⁻³ m

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  1*10⁻⁶* 1.1)

  =  6.62607*10^-9/1.1*10^-6

  = 6.02*10^-3 m

Quantum Approach: The wavelength and the size are comparable

(d)

A turtle

Mass = 710. g = 0.71 kg

Size =  22. cm = 0.22 m

V =  2.8 cm/s. = 0.028 m/s

Substituting into the formula, we have

λ= h/(mv)

λ= 6.62607*10^-9/ (  0.71* 0.028)

  = 6.62607*10^-9/0.01988

   = 3.33*10^-7 m

Quantum Approach: The wavelength and the size are comparable

8 0
3 years ago
Other questions:
  • A 1,600 kg train car rolling freely on level track at 16 m/s bumps into a 1.0 × 103 kg train car moving at 10.0 m/s in the same
    15·1 answer
  • An atom that changes so that it has an<br> electrical charge is a(n)
    8·1 answer
  • Can someone tell me how to find acceleration with only using distance and time? It would be much appreciated
    14·1 answer
  • A negative slope on the velocity vs. time graph indicates that the object is not accelerating​
    11·1 answer
  • Sound is a type of _____ wave.
    14·1 answer
  • How long does it take to fall from 5000 feet?
    12·1 answer
  • Using complete sentences and your own words describe some of the ways humans use water.
    7·1 answer
  • According to the Law of Reflection, the angle of incidence the angle of reflection. O A. is greater than B. is less than C. equa
    9·1 answer
  • 3. A man hits a 0.2 kg golf ball with a force of 4
    13·1 answer
  • Good evening! Can someone please answer this, ill give you brainliest and your earning 50 points. Would be very appreciated.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!