To solve this problem we will begin by finding the pressure through density and average depth. Later we will find the Force, by means of the relation of the pressure and the area.

Here,
h = Depth average
= Density
Moreover,

Replacing,


Finally the force



Answer:
331.7m/s
Explanation:
Given parameters:
Initial velocity = 100m/s
Acceleration = 50m/s²
Distance = 1km = 1000m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we have to apply the right motion equation shown below;
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
Now insert the parameters and solve;
v² = 100² + (2 x 50 x 1000)
v² = 110000
v = √110000 = 331.7m/s
The maximum static force that can be applied is equal to the normal force*the frictional force. the normal force on the box is equal to mg since the floor is flat using 9.81m/s^2 for gravity 12kg*9.81m/s^2 = 118N multiplying the normal force by the frictional force you get a 118*.42= 49.6N so overcome the force of static friction on the box a minimum of 49.6N would need to be applied.
Answer is B.
Because velocity is vector quantity, so magnitud and direction are needed to define it.
Since velocity means the speed(magnitude) of some object in a given direction, so it’s units are usually measured by meters/ seconds
Hmmm the only formula i know is v = d * t or volocity = distance * time