Answer:
m(∠C) = 18°
Step-by-step explanation:
From the picture attached,
m(arc BD) = 20°
m(arc DE) = 104°
Measure of the angle between secant and the tangent drawn from a point outside the circle is half the difference of the measures of intercepted arcs.
m(∠C) = ![\frac{1}{2}[\text{arc(EA)}-\text{arc(BD)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%5Ctext%7Barc%28EA%29%7D-%5Ctext%7Barc%28BD%29%7D%5D)
Since, AB is a diameter,
m(arc BD) + m(arc DE) + m(arc EA) = 180°
20° + 104° + m(arc EA) = 180°
124° + m(arc EA) = 180°
m(arc EA) = 56°
Therefore, m(∠C) = 
m(∠C) = 18°
9514 1404 393
Answer:
the y-intercepts differ
Step-by-step explanation:
The x-coefficient is the same for each function, so parallel lines are described. The function g(x) has a y-intercept of -4; f(x) has a y-intercept of 0.
The graphs differ in their intercepts.
__
<em>Additional comment</em>
g(x) can be considered to be a translation downward of f(x) by 4 units. The same graph of g(x) can be obtained by translating f(x) to the right by 2 units. That is, both the x-intercepts and y-intercepts differ between the two functions.