Answer:
B. An obtuse scalene triangle
Step-by-step explanation:
Polygons are plane figures bounded by three or more straight sides. Examples are: trigon, quadragon, hexagon, nonagon etc. They are named with respect to their number of sides.
An obtuse triangle has one of its angles greater than
but less than
. While a scalene triangles has non of its sides to be equal in length.
The valid description of the classes of polygons is: an obtuse scalene triangle. Which implies that the triangle has one of its angles to be obtuse, and non of its sides equal.
6x^2
y^3
Hope this helped, correct me if I am wrong
Answer:
22 meters
Step-by-step explanation:
Area of yellow rectangle: 6x4=24
Area of gray rectangle: 8x=24
x=3
Thus, the perimeter is 3+3+8+8, which is 22.
These are two questions and two answers.
Question 1) Which of the following polar equations is equivalent to the parametric equations below?
<span>
x=t²
y=2t</span>
Answer: option <span>A.) r = 4cot(theta)csc(theta)
</span>
Explanation:
1) Polar coordinates ⇒ x = r cosθ and y = r sinθ
2) replace x and y in the parametric equations:
r cosθ = t²
r sinθ = 2t
3) work r sinθ = 2t
r sinθ/2 = t
(r sinθ / 2)² = t²
4) equal both expressions for t²
r cos θ = (r sin θ / 2 )²
5) simplify
r cos θ = r² (sin θ)² / 4
4 = r (sinθ)² / cos θ
r = 4 cosθ / (sinθ)²
r = 4 cot θ csc θ ↔ which is the option A.
Question 2) Which polar equation is equivalent to the parametric equations below?
<span>
x=sin(theta)cos(theta)+cos(theta)
y=sin^2(theta)+sin(theta)</span>
Answer: option B) r = sinθ + 1
Explanation:
1) Polar coordinates ⇒ x = r cosθ, and y = r sinθ
2) replace x and y in the parametric equations:
a) r cosθ = sin(θ)cos(θ)+cos(θ)
<span>
b) r sinθ =sin²(θ)+sin(θ)</span>
3) work both equations
a) r cosθ = sin(θ)cos(θ)+cos(θ) ⇒ r cosθ = cosθ [ sin θ + 1] ⇒ r = sinθ + 1
<span>
b) r sinθ =sin²(θ)+sin(θ) ⇒ r sinθ = sinθ [sinθ + 1] ⇒ r = sinθ + 1
</span><span>
</span><span>
</span>Therefore, the answer is r = sinθ + 1 which is the option B.
So all 4 bags of sugar yielded 5 and 1/2 cups..... well.. how many in each one? well, let's split the 5 and 1/2 evenly in 4 pieces.