Answer:
93.32% probability that a randomly selected score will be greater than 63.7.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected score will be greater than 63.7.
This is 1 subtracted by the pvalue of Z when X = 63.7. So



has a pvalue of 0.0668
1 - 0.0668 = 0.9332
93.32% probability that a randomly selected score will be greater than 63.7.
1) given x^4 + 95x^2 - 500
2) split in two factors with common factor term x^2: (x^2 + )(x^2 - )
3) find two numbers that add up 95 and their product is - 500:
=> 100*(-5) = - 500 and 100 - 5 = 95
=> (x^2 + 100)(x^2 - 5)
4) factor x^2 - 5 = (x + √5) (x - √5)
5) write the prime factors: (x^2 + 100) (x + √5) (x -√5)
6) find the solutions:
x^2 + 100 = 0 => not possible
x + √5 = 0 => x = - √5
x - √5 = 0 => x = √5
Answer: x = √5 and x = - √5
Answer:
Step-by-step explanation:
As the two figure are the image and pre-image of a dilation.
Considering the left sided triangle is original and right sided triangle ( smaller one) is the image.
As one of the sides of the left triangle (original figure) is 4 in. And the corresponding length of the side on the right triangle (image of the figure) is 2 in.
It means the image of the side (2 in) is obtained when the side (4 in) of the original object is dilated by a scale factor of 1/2. In other words, the side of the image (2 in) is obtained multiplying the side (4 in) of original figure by 1/2. i.e. 4/2 = 2 in
Lets determine the missing side of the right side triangle by the same rule.
As the original object has one of the sides is 5 in and the corresponding side of the image has x in. As the original figure is dilated by a scale factor of 1/2. so the missing side of x will be: x = 5/2 = 2.5
So, the value of x will be 2.5
Similarly, the original object has one of the sides with length (y + 1 in). As the As the original figure is dilated by a scale factor of 1/2. As the corresponding length of the side of the image triangle is 3 in.
so
y + 1 = 2(3) ∵ 3 in (image side) is multiplied by 2
y + 1 = 6
y = 6 - 1
y = 5
So, the value of y = 5
Therefore,