Answer:
To the right of
To the left of
Below
(4.5,200)
Step-by-step explanation:
Got it right on Edge.
15 = 10 +5 tha is my answer to <span>Right triangle, hypotenuse =10 short= 5 what does the long leg equal
</span>
![\large\mathfrak{{\pmb{\underline{\blue{To\:find}}{\blue{:}}}}}](https://tex.z-dn.net/?f=%5Clarge%5Cmathfrak%7B%7B%5Cpmb%7B%5Cunderline%7B%5Cblue%7BTo%5C%3Afind%7D%7D%7B%5Cblue%7B%3A%7D%7D%7D%7D%7D)
The value of
.
![\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}](https://tex.z-dn.net/?f=%5Clarge%5Cmathfrak%7B%7B%5Cpmb%7B%5Cunderline%7B%5Corange%7BSolution%7D%7D%7B%5Corange%7B%3A%7D%7D%7D%7D%7D)
![\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\red{:}}}}}](https://tex.z-dn.net/?f=%5Clarge%5Cmathfrak%7B%7B%5Cpmb%7B%5Cunderline%7B%5Cred%7BStep-by-step%5C%3Aexplanation%7D%7D%7B%5Cred%7B%3A%7D%7D%7D%7D%7D)
We know that,
![\sf\purple{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}](https://tex.z-dn.net/?f=%5Csf%5Cpurple%7BSum%5C%3Aof%5C%3Aangles%5C%3Aon%5C%3Aa%5C%3Astraight%5C%3Aline%5C%3A%3D%5C%3A180%C2%B0%7D)
➪ 125° +
+ 30° = 180°
➪
+ 155° = 180°
➪
= 180° - 155°
➪
= 25°
Therefore, the value of
is 25°.
Now, the three angles of the triangle are 125°, 25° and 30°.
![\large\mathfrak{{\pmb{\underline{\pink{To\:verify}}{\pink{:}}}}}](https://tex.z-dn.net/?f=%5Clarge%5Cmathfrak%7B%7B%5Cpmb%7B%5Cunderline%7B%5Cpink%7BTo%5C%3Averify%7D%7D%7B%5Cpink%7B%3A%7D%7D%7D%7D%7D)
✒ 125° + 25° + 30° = 180°
✒ 180° = 180°
✒ L. H. S. = R. H. S.
![\boxed{Hence\:verified.}](https://tex.z-dn.net/?f=%5Cboxed%7BHence%5C%3Averified.%7D)
![\huge{\textbf{\textsf{{\orange{My}}{\blue{st}}{\pink{iq}}{\purple{ue}}{\red{35}}{\green{ヅ}}}}}](https://tex.z-dn.net/?f=%5Chuge%7B%5Ctextbf%7B%5Ctextsf%7B%7B%5Corange%7BMy%7D%7D%7B%5Cblue%7Bst%7D%7D%7B%5Cpink%7Biq%7D%7D%7B%5Cpurple%7Bue%7D%7D%7B%5Cred%7B35%7D%7D%7B%5Cgreen%7B%E3%83%85%7D%7D%7D%7D%7D)
ANSWER
3) b
EXPLANATION
Given that:
![\sin(20 \degree) = a](https://tex.z-dn.net/?f=%20%5Csin%2820%20%5Cdegree%29%20%20%3D%20a)
and
![\cos(20 \degree) = b](https://tex.z-dn.net/?f=%20%5Ccos%2820%20%5Cdegree%29%20%20%3D%20b)
Recall that the sine and cosine functions are equal for complementary angles.
This implies that,
![\sin(70 \degree) = \cos(20 \degree)](https://tex.z-dn.net/?f=%20%5Csin%2870%20%5Cdegree%29%20%20%3D%20%20%5Ccos%2820%20%5Cdegree%29%20)
![\sin(70 \degree) = b](https://tex.z-dn.net/?f=%20%5Csin%2870%20%5Cdegree%29%20%3D%20b)