Following reaction occurs in the given electrochemical system:

→ Fe +

Thus, under standard conditions
E(0) = E(0) Fe2+/Fe - E(0) Zn2+/Zn
where,

= standard reduction potential of Fe2+/Fe = -0.44 v

= standard reduction potential of Zn2+/Zn = -0.763 v
E(0) = 0.323 v
now, we know that, ΔG(0) =-nFE(0) ............... (1)
Also, Δ

On equating and rearranging equation 1 and 2, we get
K = exp(

)= exp (

) = 8.46 x
Answer:
The answer to your question is P2 = 0.78 atm
Explanation:
Data
Temperature 1 = T1 = 263°K Temperature 2 = T2 = 298°K
Volume 1 = V1 = 24 L Volume 2 = V2 = 35 L
Pressure 1 = P1 = 1 Pressure 2 = P2 = ?
Process
1.- To solve this problem use the Combined gas law
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
-Substitution
P2 = (1)(24)(298) / (263)(35)
-Simplification
P2 = 7152 / 9205
-Result
P2 = 0.777
or P2 = 0.78 atm
Answer:
i got you dawg just gimme one sec i'll get to you fr g
Explanation:
<h2>
Hello!</h2>
The answer is:
The percent yield of the reaction is 32.45%
<h2>
Why?</h2>
To calculate the percent yield, we have to consider the theoretical yield and the actual yield. The theoretical yield as its name says is the yield expected, however, many times the difference between the theoretical yield and the actual yield is notorious.
We are given that:

Now, to calculate the percent yield, we need to divide the actual yield by the theoretical and multiply it by 100.
So, calculating we have:

Hence, we have that the percent yield of the reaction is 32.45%.
Have a nice day!
Exothermic reaction is when the system releases energy to the surrounding, the energy (in the perspective of the system) will have a sign of negative, as the system is transferring energy towards the surrounding.
Endothermic reaction is when the system is absorbing energy from the surrounding, the energy (in the perspective of the system) will have a sign of positive, as energy is transferred to the system.