<span>A) mL / s
This is the amount of milliliters per second</span>
Answer:
The final temperature is:- 7428571463.57 °C
Explanation:
The expression for the calculation of heat is shown below as:-
Where,
is the heat absorbed/released
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass of water = 1.75 mg = 0.00175 g ( 1 g = 0.001 mg)
Specific heat of water = 4.18 J/g°C
Initial temperature = 35 °C
Final temperature = x °C
kcal
Also, 1 kcal = 4.18 kJ =
J
So, Q =
J = 54340000 J
So,

Thus, the final temperature is:- 7428571463.57 °C
Write as a proportion, showing the relationship of both given information:
68.0g 0.3g
---------- = -----------
1L x ( your answer)
Cross multiply: 68.0g× X = 0.3g × 1L
68.0g (X)= 0.3g/L
Solve for X by dividing both sides by 68.0 g
68.0g (X) = 0.3g/L
------------- ------------------
68.0g 68.0g
Then enter into calculator 0.3/68 and that will be your solution. Make sure you round up.
Question:
Sulfuric acid was once produced through the reaction of sulfur trioxide with water. Sulfur trioxide can form through the reaction of sulfur dioxide and oxygen gas. When nitrogen monoxide gas is added to the system, the reaction speeds up significantly because it proceeds through the following steps:
equations
Identify the catalyst in this reaction, explain how you know it is the catalyst, and describe how it increases the rate of the reaction.
Answer:
NO
It is present but not consumed
NO Lowers the activation energy of the reaction
Explanation:
A catalyst is a substance that is present in a chemical reaction and enables the reaction to occur at a faster rte but does not take part n the reaction
Therefore, whereby NO is not consumed, it is the catalyst
It functions by lowering the activation energy
Answer:
a. Phosphoric Acid
b. Acetic Acid
c. Hypochlorous Acid
Explanation:
A buffer works when the pH of this one is in pKa ± 1. That means, to find which buffer system works in some pH you need to find pKa:
pKa = -log Ka
<em>pKa Acetic acid:</em>
-log1.8x10⁻⁵ = 4.74
<em>pKa phosphoric acid:</em>
-log7.5x10⁻³ = 2.12
<em>pKa hypochlorous acid:</em>
-log3.5x10⁻⁸ = 7.46
a. For a pH of 2.8 the best choice is phophoric acid because its effective range is: 1.12 - 3.12 and 2.8 is between these values.
b. pH 4.5. Acetic acid. effective between pH's 3.74 - 5.74
c. pH 7.5. Hypochlorous acid that works between 6.46 and 8.46