1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
5

Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe

rt a force on a stationary charged object? yes no (b) does a magnetic field do so? yes no (c) does an electric field exert a force on a moving charged object? yes no (d) does a magnetic field do so? yes no (e) does an electric field exert a force on a straight current-carrying wire? yes no (f) does a magnetic field do so? yes no (g) does an electric field exert a force on a beam of moving electrons? yes no (h) does a magnetic field do so? yes no
Physics
1 answer:
matrenka [14]3 years ago
6 0
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
You might be interested in
The Atomic number tells us the number of ____ in an atom.
yawa3891 [41]

Answer:

Protons

Explanation:

5 0
2 years ago
Read 2 more answers
What is the resulting velocity of the launcher if the net force on the launcher is equal to the reaction force?
xz_007 [3.2K]

Answer:

according to this question best answer is C

5 0
3 years ago
A 0.0450-kg golf ball initially at rest is given a speed of 25.2 m/s when a club strikes. part a part complete if the club and b
Ksenya-84 [330]
We are given information:
m = 0.0450 kg
Δv = 25.2 m/s
Δt = 1.95 ms = 0.00195s

To find force we use formula:
F = m * a

a is acceleration. To find it we use formula:
a = Δv / Δt 
a = 25.2 / 0.00195
a = 12923.1 m/s^2

Now we can find force:
F = 0.0450 * 12923.1
F = 581.5 N 


To check the effect of the ball's weight on this movement we need to calculate it and then compare it to this force.
W = m * g
W = 0.0450 * 9.81
W = 0.44145 N 

We can see that weight is much smaller than the applied force so it's influence in negligible.
3 0
3 years ago
Lowest frequency of wave
Harlamova29_29 [7]
The answer would be a radio wave
4 0
3 years ago
Read 2 more answers
How do bones and muscles work together to allow movement?
alexandr1967 [171]
I believe the answer is A

7 0
3 years ago
Read 2 more answers
Other questions:
  • A hot air balloon has just lifted off and is rising at the constant rate of 1.60 m/s. suddenly, one of the passengers realizes s
    14·2 answers
  • Shutting the fluid discharge of an air-operated reciprocating pump will cause the pump to ?
    9·2 answers
  • Describe how the fields in the electromagnetic wave move with respect to the motion of the wave?
    8·1 answer
  • When are the two days of equinox
    11·2 answers
  • If you were looking for a metalloid on the periodic table,the best place to look would be?
    6·1 answer
  • Velocity of a Hot-Air Balloon A hot-air balloon rises vertically from the ground so that its height after t sec is given by the
    12·1 answer
  • During a medical condition screening lung capacity testing is a standard procedure. True of false
    13·1 answer
  • En las olimpiadas del 2012 del colegio villapalos maria gano la carrera de los 100 m en 10,56 s y la de 200 m en 22,34 s ¿en cua
    5·1 answer
  • Describe how the forces of gravity and friction affect the motion that occurs as you write on this page.
    11·1 answer
  • Liquid pools of methane are found on the surface of Titan, one of Saturn's moons. The temperature on the surface of Titan is -18
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!