1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
5

Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe

rt a force on a stationary charged object? yes no (b) does a magnetic field do so? yes no (c) does an electric field exert a force on a moving charged object? yes no (d) does a magnetic field do so? yes no (e) does an electric field exert a force on a straight current-carrying wire? yes no (f) does a magnetic field do so? yes no (g) does an electric field exert a force on a beam of moving electrons? yes no (h) does a magnetic field do so? yes no
Physics
1 answer:
matrenka [14]3 years ago
6 0
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
You might be interested in
A rock hits a window and stops in 0.15 seconds. The net force on the rock is 58N during the collision. What is the magnitude of
nlexa [21]

Answer:

The change in momentum is  \Delta p =   0.7 \ kg\cdot m \cdot s^{-1}

Explanation:

From the question we are told that

    The time taken for the stone to stop is \Delta  t = 0.15 \ seconds

    The net force on the rock is  F =  58 \ N

   

The impulse of the rock can be mathematically represented as

     I  =  F * \Delta t

Substituting values

     I  =  58 * 0.15

    I  =  0.7\  kg * m  * s^{-1}

Now impulse is defined as  the rate at which momentum change

   Hence the change in momentum \Delta p  of the rock is equal to the impulse of the rock

 So  

       \Delta p =  I  =  0.7 \ kg\cdot m \cdot s^{-1}

7 0
4 years ago
in physics lab, a cube slides down a frictionless incline as shown in the figure below, and elastically strikes another cube at
Tema [17]
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:

</span>

3 0
3 years ago
A 2.3 kg cart is rolling across a frictionless, horizontal track towards a 1.5 kg cart that is initially held at rest. The carts
Inga [223]

Answer:

total momentum = 8.42 kgm/s

velocity of the first cart is 3.660 m/s

Explanation:

Given data

mass m1 = 2.3 kg

mass m2 = 1.5 kg

final velocity V2 = 4.9 m/s

final velocity V3 = - 1.9 m/s

to find out

total momentum  and velocity of the first cart

solution

we know mass and final velocty

and initial velocity of second cart V1 = 0

so now we can calculate total momentum that is m1 v2 + m2 v2

total momentum =  2.3 ×4.9 + 1.5 ×(-1.9)

total momentum = 8.42 kgm/s

and

conservation of momentum  is

m1 V + m2 v1  = m1 v2  + m2 v3

put all value and find V

2.3 V + 1.5 ( 0) = 2.3 ( 4.9 ) + 1.5 ( -1.9)

V = 8.42 / 2.3

V = 3.660 m/s

so velocity of the first cart is 3.660 m/s

8 0
3 years ago
Convert 0.700 atm of pressure to its equivalent in millimeters of mercury.
inna [77]

Answer:

532 millimeters of mercury

Explanation:

In order to convert the pressure from atm to millimeters of mercury (mm Hg), we should remind the conversion factor between the two units:

1 atm = 760 mm Hg

Therefore, we can solve the problem by setting up the following proportion:

1 atm : 760 mmHg = 0.700 atm : x

Solving for x, we find

x=\frac{(760 mmHg)(0.700 atm)}{1 atm}=532 mmHg

5 0
4 years ago
What type of friction is using chalk in the summer to draw on the ground in Copley square?
Lera25 [3.4K]
The second option rolling friction
7 0
3 years ago
Other questions:
  • Find the current passing through a circuit consisting of a battery and one resistor. The resistor has a resistance of 2 ohms and
    11·2 answers
  • The kinetic energies of particles in a sample of matter are increasing. This sample is most likely
    15·1 answer
  • Why non-metals aren't good at conducting electricity?
    6·1 answer
  • Question points)
    11·1 answer
  • 20 POINTS!!!! question 4 a, c, g, h from the sheet please answer as fully as possible
    13·1 answer
  • How does weight change as the gravitational acceleration changes and why?
    5·1 answer
  • A parallel-plate capacitor, made of two circular plates of radius R - 10 cm, is connected in series 2 with a resistor of resista
    5·1 answer
  • What frequency will you hear if a truck is driving toward you at 20 m/s sounding a horn of frequency 300 Hz. Assume the speed of
    7·1 answer
  • Which best describes a force?
    10·2 answers
  • A 5kg box slides across the floor with an initial velocity of 5m/s. If the coefficient of kinetic friction between the box and t
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!