♥ C) 94%
♥ If the work put into a lever is 930 joules and the work accomplished is 870 joules, the efficiency of the lever is 94%.
♥ <span>870/930=93.5
</span>♥ And rounded you get 94.
The correct answer to the question is False i.e the tendency of an object in motion to remain in motion is not called the orbital speed.
EXPLANATION:
Before going to answer this question, first we have to understand Newton's first laws of motion.
As per Newton's first laws of motion, every body continues to be in state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces.
Hence, as long as no unbalanced force is acting on a moving object, it will be in motion. This tendency of a moving object to be in motion is called inertia of motion of the body.
Inertia of motion is the property of the body by virtue of which a moving body always tries to be in motion.
Hence, the tendency of an object in motion to remain in motion is not called as the orbital speed.
Burning of gases is one the example of chemical change
When the capacitor is connected to the voltage, a charge Q is stored on its plates. Calling
the capacitance of the capacitor in air, the charge Q, the capacitance
and the voltage (
) are related by
(1)
when the source is disconnected the charge Q remains on the capacitor.
When the space between the plates is filled with mica, the capacitance of the capacitor increases by a factor 5.4 (the permittivity of the mica compared to that of the air):

this is the new capacitance. Since the charge Q on the plates remains the same, by using eq. (1) we can find the new voltage across the capacitor:

And since
, substituting into the previous equation, we find:

Formula for time
t=d/s
so…
t= 48m/4m/s
the two ms cancel each other out and ur left with s
t=12s