Answer:
Here the source is moving away from the observer so frequency will be smaller than the actual frequency and since the speed is increasing so the frequency is decreasing with time so correct answer is
D) lower than the original pitch and decreasing as he falls.
Explanation:
As we know by the Doppler's effect of sound we have
so we will have

so here when source moves away from the observer with a some speed then the frequency of the sound observed by the observer is smaller than the actual frequency
Here we know that the speed of the source is increasing with time as the source is falling under gravity
So we can say that the pitch of the sound will decrease with time
Answer:
The state of a certain type of land or a biome.
As the number of significant figures increases, the more accurate or precise the measurement is.
<h3>What is significant figure?</h3>
The term significant figures refers to the number of important single digits in the coefficient of an expression in scientific notation.
Significant figures are the digits in a value that are known with some degree of confidence.
The effect of reporting more or fewer figures or digits than are significant;
As the number of significant figures increases, the more accurate or precise the measurement is.
As precision of a measurement increases, so does the number of significant figures.
Learn more about significant figures here: brainly.com/question/24491627
#SPJ1
Jumping on a trampoline is a classic example of conservation of energy, from potential into kinetic. It also shows Hooke's laws and the spring constant. Furthermore, it verifies and illustrates each of Newton's three laws of motion.
<u>Explanation</u>
When we jump on a trampoline, our body has kinetic energy that changes over time. Our kinetic energy is greatest, just before we hit the trampoline on the way down and when you leave the trampoline surface on the way up. Our kinetic energy is 0 when you reach the height of your jump and begin to descend and when are on the trampoline, about to propel upwards.
Potential energy changes along with kinetic energy. At any time, your total energy is equal to your potential energy plus your kinetic energy. As we go up, the kinetic energy converts into potential energy.
Hooke's law is another form of potential energy. Just as the trampoline is about to propel us up, your kinetic energy is 0 but your potential energy is maximized, even though we are at a minimum height. This is because our potential energy is related to the spring constant and Hooke's Law.