The correct answer is "C". 'Old theories are adjusted to incorporate all old new information.' This makes the most sense, regarded the old and new information should be taken into consideration.
I hope this helped you!
Brainliest answer is always appreciated!
The wedge and screw simple machines
Answer:
a)
, b)
, c) 
Explanation:
a) The capacitance of two parallel plates capacitor with dielectric is given by the following expression:

Where:
- Dielectric constant.
- Vaccum permitivity.
- Plate area.
- Distance between plates.
Hence, the capacitance of the system is:



b) The charge can be found by using the definition of capacitance:




c) The energy stored in the charged capacitor is:




Thermal energy is the answer
Hope that helps
0.304 cm I think - let me check