The mass of the proton is:

and the mass of the antiproton is exactly the same, so the total mass of the two particles is

.
In the annihilation, all the mass of the two particles is converted into energy, and the amount of this energy is given by Einstein's equivalence between mass and energy:

where M is the mass converted into energy and c is the speed of light. In this example,

, therefore the energy released is
Answer:

Explanation:
The high reached by a proyectile in an uniformly accelerated motion is given by:

The time that the rocket spends in the air is obtained for y = 0, since this is the time that the rocket travels before touching the ground. Recall that
. Solving for t:

Refer to the attached figure. Xp may not be between the particles but the reasoning is the same nonetheless.
At xp the electric field is the sum of both electric fields, remember that at a coordinate x for a particle placed at x' we have the electric field of a point charge (all of this on the x-axis of course):

Now At xp we have:


Which is a second order equation, using the quadratic formula to solve for xp would give us:

or

Plug the relevant values to get both answers.
Now, let's comment on which of those answers is the right answer. It happens that
BOTH are correct. This is simply explained by considring the following.
Let's place a possitive test charge on the system This charge feels a repulsive force due to q1 but an attractive force due to q2, if we place the charge somewhere to the left of q2 the attractive force of q2 will cancel the repulsive force of q1, this translates to a zero electric field at this x coordinate. The same could happen if we place the test charge at some point to the right of q1, hence we can have two possible locations in which the electric field is zero. The second image shows two possible locations for xp.
a.) K 2=K 1 +GmM( r 21− r 11)=2.2×10 7J
b.) K 2 +GmM( r 11− r 21)=6.9×10 7 J
Applying Law of Energy conservation :
K 1+U 1
=K 2+U 2
⇒K 1− r 1GmM
=K 2− r 2 GmM
where M=5.0×10 23kg,r1
=> R=3.0×10 6m and m=10kg
(a) If K 1
=5.0×10 7J and r 2
=4.0×10 6 m, then the above equation leads to
K 2=K 1 +GmM (r 21− r 11)=2.2×10 7J
(b) In this case, we require K 2
=0 and r2
=8.0×10 6m, and solve for K 1:K 1
=K 2 +GmM (r 11− r 21)=6.9×10 7 J
Learn more about Kinetic energy on:
brainly.com/question/12337396
#SPJ4
Answer:
<h2>
<em>Distance</em></h2>
<em>The </em><em>length</em><em> </em><em>of </em><em>the </em><em>actual </em><em>path </em><em>travelled by </em><em>a </em><em>body </em><em>is </em><em>called </em><em>distance </em><em>travelled </em><em>by </em><em>a </em><em>body.It </em><em>is </em><em>a </em><em>scalar </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em>
<h2>
<em>Displacement</em></h2>
<em>The </em><em>shortest </em><em>distance</em><em> </em><em>from </em><em>initial </em><em>position</em><em> </em><em>to </em><em>the </em><em>final </em><em>position</em><em> </em><em>of </em><em>a </em><em>body </em><em>is </em><em>called </em><em>displacement</em><em> </em><em>of </em><em>the </em><em>body.It </em><em>is </em><em>a </em><em>vector</em><em> </em><em>Quantity.</em><em>I</em><em>t</em><em> </em><em> </em><em>is </em><em>measured</em><em> </em><em>in </em><em>meter(</em><em>m)</em><em> </em><em>in </em><em>SI </em><em>system.</em><em>.</em>
<em>Please </em><em>see </em><em>the </em><em>attached </em><em>picture.</em><em>.</em><em>.</em>
<em>It </em><em>is </em><em>the </em><em>example </em><em>of </em><em>distance </em><em>and </em><em>displacement.</em><em>.</em><em>.</em><em>.</em>
<em>Hope </em><em>this </em><em>helps.</em><em>.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em><em>.</em>