Answer:
0.18 ; 0.1875 ; No
Step-by-step explanation:
Let:
Person making the order = P
Other person = O
Gift wrapping = w
P(p) = 0.7 ; P(O) = 0.3 ; p(w|O) = 0.60 ; P(w|P) = 0.10
What is the probability that a randomly selected order will be a gift wrapped and sent to a person other than the person making the order?
Using the relation :
P(W|O) = P(WnO) / P(O)
P(WnO) = P(W|O) * P(O)
P(WnO) = 0.60 * 0.3 = 0.18
b. What is the probability that a randomly selected order will be gift wrapped?
P(W) = P(W|O) * P(O) + P(W|P) * P(P)
P(W) = (0.60 * 0.3) + (0.1 * 0.7)
P(W) = 0.18 + 0.07
P(W) = 0.1875
c. Is gift wrapping independent of the destination of the gifts? Justify your response statistically
No.
For independent events the occurrence of A does not impact the occurrence if the other.
Answer:
The positive value of
will result in exactly one real root is approximately 0.028.
Step-by-step explanation:
Let
, roots are those values of
so that
. That is:
(1)
Roots are determined analytically by the Quadratic Formula:


The smaller root is
, and the larger root is
.
has one real root when
. Then, we solve the discriminant for
:


The positive value of
will result in exactly one real root is approximately 0.028.
Answer:
I Think 0x2 Or 4x + x3 I'm not 100% Sure
Step-by-step explanation:
I Tried..
Answer:
AA
Step-by-step explanation:
Answer:
A.) combinations of the hours he can work at the two jobs and earn at least $300
Step-by-step explanation: