I think the answer is 402,937.92
Answer:
The minimum value of f(x) is 2
Step-by-step explanation:
- To find the minimum value of the function f(x), you should find the value of x which has the minimum value of y, so we will use the differentiation to find it
- Differentiate f(x) with respect to x and equate it by 0 to find x, then substitute the value of x in f(x) to find the minimum value of f(x)
∵ f(x) = 2x² - 4x + 4
→ Find f'(x)
∵ f'(x) = 2(2)
- 4(1)
+ 0
∴ f'(x) = 4x - 4
→ Equate f'(x) by 0
∵ f'(x) = 0
∴ 4x - 4 = 0
→ Add 4 to both sides
∵ 4x - 4 + 4 = 0 + 4
∴ 4x = 4
→ Divide both sides by 4
∴ x = 1
→ The minimum value is f(1)
∵ f(1) = 2(1)² - 4(1) + 4
∴ f(1) = 2 - 4 + 4
∴ f(1) = 2
∴ The minimum value of f(x) is 2
Answer:
The domain of the function f(x) is:

The range of the function f(x) is:

Step-by-step explanation:
Given the function

Determining the domain:
We know that the domain of the function is the set of input or arguments for which the function is real and defined.
In other words,
- Domain refers to all the possible sets of input values on the x-axis.
It is clear that the function has undefined points nor domain constraints.
Thus, the domain of the function f(x) is:

Determining the range:
We also know that range is the set of values of the dependent variable for which a function is defined.
In other words,
- Range refers to all the possible sets of output values on the y-axis.
We know that the range of an Absolute function is of the form


so
Thus, the range of the function f(x) is:

Answer:
m = 4
Step-by-step explanation: