1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ioda
3 years ago
6

Any has 2 rows of 4 sports trophies on each of her 3 shelves. How many sports trophies does Amy have?

Mathematics
2 answers:
Alla [95]3 years ago
5 0
2 multiply by 4 is 8 , 8 multiply 3 is 24
stich3 [128]3 years ago
3 0
2x4x3= 24 sports trophies
You might be interested in
What is the solution to the system of equations below?
fgiga [73]

Answer: the answer will be c

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si
natta225 [31]

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

6 0
2 years ago
Evaluate the determinant
Luba_88 [7]
D. negative 67 because laplace’s expansion
6 0
2 years ago
The opposite of the fraction one third
lozanna [386]
The opposite of the fraction one third would be negative one third. To be opposite, they must have differing signs. One number should be positive and the other number should be negative. It is different from reciprocal. To be a reciprocal, <span>one number should be the flipped fraction, or upside down version, of the other number.</span>
3 0
3 years ago
Algebraic expression for 6 notebooks at S dollars
swat32
6=S
therefore, to find one you must divide both sides by 6
the answer should be = 1=S/6
6 0
3 years ago
Other questions:
  • A city is building a fence around a rectangular playground. If the perimeter of the playground is 92 feet and the length of one
    7·2 answers
  • A manufacturer produces mugs at a cost of $2 daily. The company also has daily costs of $500. It then sells the mugs for $5. Wha
    7·1 answer
  • Find the equation of the line containing the points (-3, -10) and (12, 0)
    13·1 answer
  • Scholarship A is worth $3000 and costs $10 to apply. Scholarship B is worth $4000 and costs $25 to apply. You have a 5% chance o
    10·1 answer
  • Please help I’m really confused
    10·1 answer
  • This chart shows the growth of a maple tree. If the tree's height increases in this same pattern, what will be the height of the
    15·1 answer
  • Solve both: 2x + y = 2 and y = 4x - 13
    6·2 answers
  • (Gonna try this again because the last one failed and I really need help..)
    12·1 answer
  • Adult tickets for the evening show at XD Theater are $16 and children's tickets are $8. If the theater seats 282 people, how man
    5·2 answers
  • The angle measurements in the diagram are represented by the following expressions.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!