Total mechanical energy = kinetic energy + potential energy
E = KE + PE
E = ½mv² + mgh
E = ½(0.1 kg)(2 m/s)² + (0.1 kg)(9.8 m/s²)(1.5 m)
E = 0.2 J + 1.47 J
E = 1.67 J
Answer:
true
Explanation:
a wheelbarrow has its load situated between the fulcrum and the force the wheel Barrow is 2nd class because of its resistance between the force and the axis
Answer:

Explanation:
The acceleration of the block can be found by the kinematics equations:

Since the plane is frictionless, the only force acting on the block along the motion of the block is its weight.

Answer:
Explanation:
Given that,
Force applied to pedal F = 50N
Angular velocity ω = 10rev/s
We know that, 1rev = 2πrad
Then, ω = 10rev/s = 10×2π rad/s
ω = 20π rad/s
Length of pedal r = 30cm = 0.3m
Power?
Power is given as
P = τ×ω
We need to find the torque τ
τ = r × F
Since r is perpendicular to F
Then, τ = 0.3 × 50
τ = 15 Nm
Then,
P = τ×ω
P = 15 × 20π
P = 942.48 Watts
power delivered to the bicycle by the athlete is 942.48 W
Answer:
1185 N
Explanation:
From Newton’s second law of motion,
F=ma where m= mass of motorcycle, a is acceleration of the motorcycle and F=Force
Net force acting on motorcycle
is given by
Where F is force acting on motorcycle and f is frictional force
Substituting F-f for
hence ma= F- f Substituting a with 3, m with 245Kg and f with 450N as provided
245*3= F- 450
F=245*3 +450= 1185 N