Answer: tensional force
Explanation:
Tension force on a material occurs when two equal forces act on a material in an opposite direction away from the ends of the material.
Pre-tensing a wire material increases its load bearing capacity and reduces its flexure.
(a) 
The moment of inertia of a uniform-density disk is given by

where
M is the mass of the disk
R is its radius
In this problem,
M = 16 kg is the mass of the disk
R = 0.19 m is the radius
Substituting into the equation, we find

(b) 142.5 J
The rotational kinetic energy of the disk is given by

where
I is the moment of inertia
is the angular velocity
We know that the disk makes one complete rotation in T=0.2 s (so, this is the period). Therefore, its angular velocity is

And so, the rotational kinetic energy is

(c) 
The rotational angular momentum of the disk is given by

where
I is the moment of inertia
is the angular velocity
Substituting the values found in the previous parts of the problem, we find

Density =mass/volume 120/200 =0.6 g/cm
Answer:
the diver's speed is independent of the launch height.
Explanation:
For this exercise we must use Newton's second law
fr - W = m a
the friction force has the general form
fr = b v
Let's analyze this equation to find out what happens with the speed of the distant club.
When jumping, the initial speed is zero, so the friction force is zero and has an acceleration equal to the acceleration of gravity, as the speed increases the friction force increases decreasing the acceleration until it becomes zero, when it arrives at this value the velocity it has is called terminal velocity and this velocity remains fixed in relation to the trajectory.
fr = W
v = cte
The distance or time in which this equilibrium is reached is relatively fast, so the diver's speed is independent of the launch height.